Visualization of RP58 promoter activity in neural progenitor cells using luminescence live cell imaging system

2010 ◽  
Vol 68 ◽  
pp. e132
Author(s):  
Chiaki Ohtaka Maruyama ◽  
Akiko Miwa ◽  
Shinobu Hirai ◽  
Akiyo Takahashi ◽  
Haruo Okado
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sadaf Kalsum ◽  
Blanka Andersson ◽  
Jyotirmoy Das ◽  
Thomas Schön ◽  
Maria Lerm

Abstract Background Efficient high-throughput drug screening assays are necessary to enable the discovery of new anti-mycobacterial drugs. The purpose of our work was to develop and validate an assay based on live-cell imaging which can monitor the growth of two distinct phenotypes of Mycobacterium tuberculosis and to test their susceptibility to commonly used TB drugs. Results Both planktonic and cording phenotypes were successfully monitored as fluorescent objects using the live-cell imaging system IncuCyte S3, allowing collection of data describing distinct characteristics of aggregate size and growth. The quantification of changes in total area of aggregates was used to define IC50 and MIC values of selected TB drugs which revealed that the cording phenotype grew more rapidly and displayed a higher susceptibility to rifampicin. In checkerboard approach, testing pair-wise combinations of sub-inhibitory concentrations of drugs, rifampicin, linezolid and pretomanid demonstrated superior growth inhibition of cording phenotype. Conclusions Our results emphasize the efficiency of using automated live-cell imaging and its potential in high-throughput whole-cell screening to evaluate existing and search for novel antimycobacterial drugs.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuki Takamatsu ◽  
Olga Dolnik ◽  
Takeshi Noda ◽  
Stephan Becker

Abstract Background Live-cell imaging is a powerful tool for visualization of the spatio-temporal dynamics of moving signals in living cells. Although this technique can be utilized to visualize nucleocapsid transport in Marburg virus (MARV)- or Ebola virus-infected cells, the experiments require biosafety level-4 (BSL-4) laboratories, which are restricted to trained and authorized individuals. Methods To overcome this limitation, we developed a live-cell imaging system to visualize MARV nucleocapsid-like structures using fluorescence-conjugated viral proteins, which can be conducted outside BSL-4 laboratories. Results Our experiments revealed that nucleocapsid-like structures have similar transport characteristics to those of nucleocapsids observed in MARV-infected cells, both of which are mediated by actin polymerization. Conclusions We developed a non-infectious live cell imaging system to visualize intracellular transport of MARV nucleocapsid-like structures. This system provides a safe platform to evaluate antiviral drugs that inhibit MARV nucleocapsid transport.


2016 ◽  
Vol 50 (11) ◽  
pp. 1214-1225 ◽  
Author(s):  
Saki Nakamura ◽  
Ayumi Nakanishi ◽  
Minami Takazawa ◽  
Shunsuke Okihiro ◽  
Shiro Urano ◽  
...  

2014 ◽  
Vol 42 (11) ◽  
pp. e90-e90 ◽  
Author(s):  
Ilchung Shin ◽  
Judhajeet Ray ◽  
Vinayak Gupta ◽  
Muslum Ilgu ◽  
Jonathan Beasley ◽  
...  

Microscopy ◽  
2019 ◽  
Author(s):  
Yuki Takamatsu ◽  
Junichi Kajikawa ◽  
Yukiko Muramoto ◽  
Masahiro Nakano ◽  
Takeshi Noda

Abstract Lassa virus (LASV), belonging to the family Arenaviridae, causes severe haemorrhagic manifestations and is associated with a high mortality rate in humans. Thus, it is classified as a biosafety level (BSL)-4 agent. Since countermeasures for LASV diseases are yet to be developed, it is important to elucidate the molecular mechanisms underlying the life cycle of the virus, including its viral and host cellular protein interactions. These underlying molecular mechanisms may serve as the key for developing novel therapeutic options. Lymphocytic choriomeningitis virus (LCMV), a close relative of LASV, is usually asymptomatic and is categorized as a BSL-2 agent. In the present study, we visualized the transport of viral matrix Z protein in LCMV-infected cells using live-cell imaging microscopy. We demonstrated that the transport of Z protein is mediated by polymerized microtubules. Interestingly, the transport of LASV Z protein showed characteristics similar to those of Z protein in LCMV-infected cells. The live-cell imaging system using LCMV provides an attractive surrogate measure for studying arenavirus matrix protein transport in BSL-2 laboratories. In addition, it could be also utilized to analyze the interactions between viral matrix proteins and the cellular cytoskeleton, as well as to evaluate the antiviral compounds that target the transport of viral matrix proteins.


Sign in / Sign up

Export Citation Format

Share Document