Orientation of K+ channel proteins in the peri-nuclear ER membrane of HEK293 cells

2011 ◽  
Vol 71 ◽  
pp. e313
Author(s):  
Yoshimichi Murata ◽  
Itsuro Kazama ◽  
Yoshio Maruyama
2006 ◽  
Vol 127 (2) ◽  
pp. 159-169 ◽  
Author(s):  
Jill Thompson ◽  
Ted Begenisich

The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.


2000 ◽  
Vol 20 (24) ◽  
pp. 9071-9085 ◽  
Author(s):  
David Lau ◽  
Eleazar Vega-Saenz de Miera ◽  
Diego Contreras ◽  
Ander Ozaita ◽  
Michael Harvey ◽  
...  

1997 ◽  
Vol 273 (5) ◽  
pp. H2534-H2538 ◽  
Author(s):  
Saeed Mohammad ◽  
Zhengfeng Zhou ◽  
Qiuming Gong ◽  
Craig T. January

Cisapride, a gastrointestinal prokinetic agent, is known to cause long Q-T syndrome and ventricular arrhythmias. The cellular mechanism is not known. The human ether-á-go-go-related gene ( HERG), which encodes the rapidly activating delayed rectifier K+current and is important in cardiac repolarization, may serve as a target for the action of cisapride. We tested the hypothesis that cisapride blocks HERG. The whole cell patch-clamp recording technique was used to study HERG channels stably expressed heterologously in HEK293 cells. Under voltage-clamp conditions, cisapride block of HERG is dose dependent with a half-maximal inhibitory concentration of 6.5 nM at 22°C ( n = 25 cells). Currents rapidly recovered with drug washout. The onset of block by cisapride required channel activation indicative of open or inactivated state blockage. Block of HERG with cisapride after channel activation was voltage dependent. At −20 mV, 10 nM cisapride reduced HERG tail-current amplitude by 5%, whereas, at +20 mV, the tail-current amplitude was reduced by 45% ( n = 4 cells). At −20 and +20 mV, 100 nM cisapride reduced tail-current amplitude by 66 and 90%, respectively. We conclude that cisapride is a potent blocker of HERG channels expressed in HEK293 cells. This effect may account for the clinical occurrence of Q-T prolongation and ventricular arrhythmias observed with cisapride.


FEBS Letters ◽  
1996 ◽  
Vol 378 (1) ◽  
pp. 64-68 ◽  
Author(s):  
Michel Fink ◽  
Fabrice Duprat ◽  
Catherine Heurteaux ◽  
Florian Lesage ◽  
Georges Romey ◽  
...  

2009 ◽  
Vol 380 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Dong-fang Gu ◽  
Xue-lian Li ◽  
Zhi-ping Qi ◽  
Sha-shan Shi ◽  
Mei-qin Hu ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 678
Author(s):  
Carter R. Murry ◽  
Irina V. Agarkova ◽  
Jayadri S. Ghosh ◽  
Fiona C. Fitzgerald ◽  
Roger M. Carlson ◽  
...  

Chloroviruses are large, plaque-forming, dsDNA viruses that infect chlorella-like green algae that live in a symbiotic relationship with protists. Chloroviruses have genomes from 290 to 370 kb, and they encode as many as 400 proteins. One interesting feature of chloroviruses is that they encode a potassium ion (K+) channel protein named Kcv. The Kcv protein encoded by SAG chlorovirus ATCV-1 is one of the smallest known functional K+ channel proteins consisting of 82 amino acids. The KcvATCV-1 protein has similarities to the family of two transmembrane domain K+ channel proteins; it consists of two transmembrane α-helixes with a pore region in the middle, making it an ideal model for studying K+ channels. To assess their genetic diversity, kcv genes were sequenced from 103 geographically distinct SAG chlorovirus isolates. Of the 103 kcv genes, there were 42 unique DNA sequences that translated into 26 new Kcv channels. The new predicted Kcv proteins differed from KcvATCV-1 by 1 to 55 amino acids. The most conserved region of the Kcv protein was the filter, the turret and the pore helix were fairly well conserved, and the outer and the inner transmembrane domains of the protein were the most variable. Two of the new predicted channels were shown to be functional K+ channels.


Sign in / Sign up

Export Citation Format

Share Document