Neural correlates of anticipatory cardiac deceleration and its association with the speed of perceptual decision-making, in young and older adults

NeuroImage ◽  
2019 ◽  
Vol 199 ◽  
pp. 521-533
Author(s):  
Maria J. Ribeiro ◽  
Miguel Castelo-Branco
2011 ◽  
Vol 23 (9) ◽  
pp. 2147-2158 ◽  
Author(s):  
Simone Kühn ◽  
Florian Schmiedek ◽  
Björn Schott ◽  
Roger Ratcliff ◽  
Hans-Jochen Heinze ◽  
...  

Perceptual decision-making performance depends on several cognitive and neural processes. Here, we fit Ratcliff's diffusion model to accuracy data and reaction-time distributions from one numerical and one verbal two-choice perceptual-decision task to deconstruct these performance measures into the rate of evidence accumulation (i.e., drift rate), response criterion setting (i.e., boundary separation), and peripheral aspects of performance (i.e., nondecision time). These theoretical processes are then related to individual differences in brain activation by means of multiple regression. The sample consisted of 24 younger and 15 older adults performing the task in fMRI before and after 100 daily 1-hr behavioral training sessions in a multitude of cognitive tasks. Results showed that individual differences in boundary separation were related to striatal activity, whereas differences in drift rate were related to activity in the inferior parietal lobe. These associations were not significantly modified by adult age or perceptual expertise. We conclude that the striatum is involved in regulating response thresholds, whereas the inferior parietal lobe might represent decision-making evidence related to letters and numbers.


Author(s):  
Victoria A. Spaulding ◽  
Donita A. Phipps

Younger and older participants were trained to perform a computerized football task. Half of the participants received rule-based training and the remainder received color enhancements in alternating blocks. Both younger and older adults improved RT performance, with the younger participants performing about twice as fast as the older participants. The participants transferred to Novel, Cluttered and Time-Stress conditions. The effect of training type (rules better than enhancements) failed to persist during transfer. Age-related impairments of RT and overall accuracy persisted during transfer, although older participants maintained a higher primary accuracy (except for Time-Stress). Their performance plummeted during the Time-Stress, but improved across the blocks. During the subsequent baseline block, primary accuracy returned to the pre-Cluttered level and RT slightly declined. These results suggest that the older participants changed strategies under time stress, and with more practice, their performance on this complex perceptual task may increase dramatically.


2020 ◽  
Vol 30 (10) ◽  
pp. 5471-5483
Author(s):  
Y Yau ◽  
M Dadar ◽  
M Taylor ◽  
Y Zeighami ◽  
L K Fellows ◽  
...  

Abstract Current models of decision-making assume that the brain gradually accumulates evidence and drifts toward a threshold that, once crossed, results in a choice selection. These models have been especially successful in primate research; however, transposing them to human fMRI paradigms has proved it to be challenging. Here, we exploit the face-selective visual system and test whether decoded emotional facial features from multivariate fMRI signals during a dynamic perceptual decision-making task are related to the parameters of computational models of decision-making. We show that trial-by-trial variations in the pattern of neural activity in the fusiform gyrus reflect facial emotional information and modulate drift rates during deliberation. We also observed an inverse-urgency signal based in the caudate nucleus that was independent of sensory information but appeared to slow decisions, particularly when information in the task was ambiguous. Taken together, our results characterize how decision parameters from a computational model (i.e., drift rate and urgency signal) are involved in perceptual decision-making and reflected in the activity of the human brain.


Author(s):  
Jacobo Fernandez-Vargas ◽  
Christoph Tremmel ◽  
Davide Valeriani ◽  
Saugat Bhattacharyya ◽  
Caterina Cinel ◽  
...  

Author(s):  
Ana Gómez-Granados ◽  
Deborah A Barany ◽  
Margaret Schrayer ◽  
Isaac L. Kurtzer ◽  
Cédrick T Bonnet ◽  
...  

Many goal-directed actions that require rapid visuomotor planning and perceptual decision-making are affected in older adults, causing difficulties in execution of many functional activities of daily living. Visuomotor planning and perceptual decision-making are mediated by the dorsal and ventral visual streams, respectively, but it is unclear how age-induced changes in sensory processing in these streams contribute to declines in goal-directed actions. Previously, we have shown that in healthy adults, task demands influence movement strategies during visuomotor decision-making, reflecting differential integration of sensory information between the two streams. Here, we asked the question if older adults would exhibit larger declines in interactions between the two streams during demanding motor tasks. Older adults (n=15) and young controls (n=26) performed reaching or interception movements towards virtual objects. In some blocks of trials, participants also had to select an appropriate movement goal based on the shape of the object. Our results showed that older adults corrected fewer initial decision errors during both reaching and interception movements. During the interception decision task, older adults made more decision- and execution-related errors than young adults, which were related to early initiation of their movements. Together, these results suggest that older adults have a reduced ability to integrate new perceptual information to guide online action, which may reflect impaired ventral-dorsal stream interactions.


2013 ◽  
Author(s):  
Martijn J. Mulder ◽  
Eric-Jan Wagenmakers ◽  
Roger Ratcliff ◽  
Wouter Boekel ◽  
Birte U. Forstmann

2011 ◽  
Vol 106 (5) ◽  
pp. 2383-2398 ◽  
Author(s):  
Taosheng Liu ◽  
Timothy J. Pleskac

Sequential sampling models provide a useful framework for understanding human decision making. A key component of these models is an evidence accumulation process in which information is accrued over time to a threshold, at which point a choice is made. Previous neurophysiological studies on perceptual decision making have suggested accumulation occurs only in sensorimotor areas involved in making the action for the choice. Here we investigated the neural correlates of evidence accumulation in the human brain using functional magnetic resonance imaging (fMRI) while manipulating the quality of sensory evidence, the response modality, and the foreknowledge of the response modality. We trained subjects to perform a random dot motion direction discrimination task by either moving their eyes or pressing buttons to make their responses. In addition, they were cued about the response modality either in advance of the stimulus or after a delay. We isolated fMRI responses for perceptual decisions in both independently defined sensorimotor areas and task-defined nonsensorimotor areas. We found neural signatures of evidence accumulation, a higher fMRI response on low coherence trials than high coherence trials, primarily in saccade-related sensorimotor areas (frontal eye field and intraparietal sulcus) and nonsensorimotor areas in anterior insula and inferior frontal sulcus. Critically, such neural signatures did not depend on response modality or foreknowledge. These results help establish human brain areas involved in evidence accumulation and suggest that the neural mechanism for evidence accumulation is not specific to effectors. Instead, the neural system might accumulate evidence for particular stimulus features relevant to a perceptual task.


Sign in / Sign up

Export Citation Format

Share Document