inferior parietal lobe
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 168 ◽  
pp. S124-S125
Author(s):  
Yun Li ◽  
Wenjuan Li ◽  
Tingting Zhang ◽  
Junjun Zhang ◽  
Zhenlan Jin ◽  
...  

2021 ◽  
Author(s):  
François Osiurak ◽  
Caroline Crétel ◽  
Natalie Uomini ◽  
Chloé Bryche ◽  
Mathieu Lesourd ◽  
...  

Understanding the link between brain evolution and the evolution of distinctive features of modern human cognition is a fundamental challenge. A still unresolved question concerns the co-evolution of tool behavior (i.e., tool use or tool making) and language. The shared neurocognitive processes hypothesis suggests that the emergence of the combinatorial component of language skills within the frontal lobe/Broca’s area made possible the complexification of tool-making skills. The importance of frontal lobe/Broca’s area in tool behavior is somewhat surprising with regard to the literature on neuropsychology and cognitive neuroscience, which has instead stressed the critical role of the left inferior parietal lobe. Therefore, to be complete, any version of the shared neurocognitive processes hypothesis needs to integrate the potential interactions between the frontal lobe/Broca’s area and the left inferior parietal lobe as well as their co-evolution at a phylogenetic level. Here we sought to provide first elements of answer through the use of the massive deployment framework, which posits that evolutionarily older brain areas are deployed in more cognitive functions (i.e., they are less specific). We focused on the left parietal cortex, and particularly the left areas PF, PGI, and AIP, which are known to be involved in tool use, language, and motor control, respectively. The deployment of each brain area in different cognitive functions was measured by conducting a meta-analysis of neuroimaging studies. Our results confirmed the pattern of specificity for each brain area and also showed that the left area PGI was far less specific than the left areas PF and AIP. From these findings, we discuss the different evolutionary scenarios depicting the potential co-evolution of the combinatorial and generative components of language and tool behavior in our lineage.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yongxin Li ◽  
Zeyun Yu ◽  
Ping Wu ◽  
Jiaxu Chen

Abstract Introduction Stroke is one of the leading causes of substantial disability worldwide. Previous studies have shown brain functional and structural alterations in adults with stroke. However, few studies have examined the longitudinal reorganization in whole-brain structural networks in stroke. Methods Here, we applied graph theoretical analysis to investigate the longitudinal topological organization of white matter networks in 20 ischemic stroke patients with a one-month interval between two timepoints. Two sets of clinical scores, Fugl-Meyer motor assessment (FMA) and neurological deficit scores (NDS), were assessed for all patients on the day the image data were collected. Results The stroke patients exhibited significant increases in FMA scores and significant reductions in DNS between the two timepoints. All groups exhibited small-world organization (σ  >  1) in the brain structural network, including a high clustering coefficient (γ  >  1) and a low normalized characteristic path length (λ ≈ 1). However, compared to healthy controls, stroke patients showed significant decrease in nodal characteristics at the first timepoint, primarily in the right supplementary motor area, right middle temporal gyrus, right inferior parietal lobe, right postcentral gyrus and left posterior cingulate gyrus. Longitudinal results demonstrated that altered nodal characteristics were partially restored one month later. Additionally, significant correlations between the nodal characteristics of the right supplementary motor area and the clinical scale scores (FMA and NDS) were observed in stroke patients. Similar behavioral-neuroimaging correlations were found in the right inferior parietal lobe. Conclusion Altered topological properties may be an effect of stroke, which can be modulated during recovery. The longitudinal results and the neuroimaging-behavioral relationship may provide information for understanding brain recovery from stroke. Future studies should detect whether observed changes in structural topological properties can predict the recovery of daily cognitive function in stroke.


Author(s):  
Simona Raimo ◽  
Gabriella Santangelo ◽  
Luigi Trojano

AbstractDrawing is a multi-component process requiring a wide range of cognitive abilities. Several studies on patients with focal brain lesions and functional neuroimaging studies on healthy individuals demonstrated that drawing is associated with a wide brain network. However, the neural structures specifically related to drawing remain to be better comprehended. We conducted a systematic review complemented by a meta-analytic approach to identify the core neural underpinnings related to drawing in healthy individuals. In analysing the selected studies, we took into account the type of the control task employed (i.e. motor or non-motor) and the type of drawn stimulus (i.e. geometric, figurative, or nonsense). The results showed that a fronto-parietal network, particularly on the left side of the brain, was involved in drawing when compared with other motor activities. Drawing figurative images additionally activated the inferior frontal gyrus and the inferior temporal cortex, brain areas involved in selection of semantic features of objects and in visual semantic processing. Moreover, copying more than drawing from memory was associated with the activation of extrastriate cortex (BA 18, 19). The activation likelihood estimation coordinate-based meta-analysis revealed a core neural network specifically associated with drawing which included the premotor area (BA 6) and the inferior parietal lobe (BA 40) bilaterally, and the left precuneus (BA 7).These results showed that a fronto-parietal network is specifically involved in drawing and suggested that a crucial role is played by the (left) inferior parietal lobe, consistent with classical literature on constructional apraxia.


2021 ◽  
pp. 1-13
Author(s):  
Gavin M. Bidelman ◽  
Claire Pearson ◽  
Ashleigh Harrison

Categorical judgments of otherwise identical phonemes are biased toward hearing words (i.e., “Ganong effect”) suggesting lexical context influences perception of even basic speech primitives. Lexical biasing could manifest via late stage postperceptual mechanisms related to decision or, alternatively, top–down linguistic inference that acts on early perceptual coding. Here, we exploited the temporal sensitivity of EEG to resolve the spatiotemporal dynamics of these context-related influences on speech categorization. Listeners rapidly classified sounds from a /gɪ/-/kɪ/ gradient presented in opposing word–nonword contexts ( GIFT–kift vs. giss–KISS), designed to bias perception toward lexical items. Phonetic perception shifted toward the direction of words, establishing a robust Ganong effect behaviorally. ERPs revealed a neural analog of lexical biasing emerging within ~200 msec. Source analyses uncovered a distributed neural network supporting the Ganong including middle temporal gyrus, inferior parietal lobe, and middle frontal cortex. Yet, among Ganong-sensitive regions, only left middle temporal gyrus and inferior parietal lobe predicted behavioral susceptibility to lexical influence. Our findings confirm lexical status rapidly constrains sublexical categorical representations for speech within several hundred milliseconds but likely does so outside the purview of canonical auditory-sensory brain areas.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Oliver Gray ◽  
Lewis Fry ◽  
Daniela Montaldi

Abstract Our understanding of the inferior parietal lobe (IPL) remains challenged by inconsistencies between neuroimaging and neuropsychological perspectives. To date, others assume that hemispheric specialisation of the IPL is linked with the type of processing; attention processing in the right hemisphere; memory retrieval and semantic judgement in the left hemisphere. Here, we provide compelling evidence associating the type of information being processed with the recruitment of each hemisphere’s IPL. In a meta-analysis, we classify 121 previous fMRI reports of IPL activity arising from episodic memory retrieval, according to the type of information that characterises each fMRI contrast. We demonstrate that the left IPL is more consistently associated with retrieval of the semantic (95% of eligible contrasts) than perceptual aspects of memory (83%). In contrast, the right IPL is more consistently associated with the retrieval of perceptual (97%), than semantic aspects of memory (43%). This work revises assumptions of how the IPL contributes to healthy cognition and has major implications for IPL-related neuropsychological deficits.


2020 ◽  
Author(s):  
Gavin M. Bidelman ◽  
Claire Pearson ◽  
Ashleigh Harrison

AbstractCategorical judgments of otherwise identical phonemes are biased toward hearing words (i.e., “Ganong effect”) suggesting lexical context influences perception of even basic speech primitives. Lexical biasing could manifest via late stage post-perceptual mechanisms related to decision or alternatively, top-down linguistic inference which acts on early perceptual coding. Here, we exploited the temporal sensitivity of EEG to resolve the spatiotemporal dynamics of these context-related influences on speech categorization. Listeners rapidly classified sounds from a /gi/ - /ki/ gradient presented in opposing word-nonword contexts (GIFT-kift vs. giss-KISS), designed to bias perception toward lexical items. Phonetic perception shifted toward the direction of words, establishing a robust Ganong effect behaviorally. ERPs revealed a neural analog of lexical biasing emerging within ∼200 ms. Source analyses uncovered a distributed neural network supporting the Ganong including middle temporal gyrus (MTG), inferior parietal lobe (IPL), and middle frontal cortex. Yet, among Ganong-sensitive regions, only left MTG and IPL predicted behavioral susceptibility to lexical influence. Our findings confirm lexical status rapidly constrains sub-lexical categorical representations for speech within several hundred milliseconds but likely does so outside the purview of canonical “auditory-linguistic” brain areas.


2020 ◽  
Vol 10 (7) ◽  
pp. 459 ◽  
Author(s):  
Gaoxia Wei ◽  
Ruoguang Si ◽  
Youfa Li ◽  
Ying Yao ◽  
Lizhen Chen ◽  
...  

Volition is described as a psychological construct with great emphasis on the sense of agency. During volitional behavior, an individual always presents a volitional quality, an intrapersonal trait for dealing with adverse circumstances, which determines the individual’s persistence of action toward their intentions or goals. Elite athletes are a group of experts with superior volitional quality and, thereby, could be regarded as the natural subject pool to investigate this mental trait. The purpose of this study was to examine brain morphometric characteristics associated with volitional quality by using magnetic resonance imaging (MRI) and the Scale of Volitional Quality. We recruited 16 national-level athletes engaged in short track speed skating and 18 healthy controls matched with age and gender. A comparison of a parcel-wise brain anatomical characteristics of the healthy controls with those of the elite athletes revealed three regions with significantly increased cortical thickness in the athlete group. These regions included the left precuneus, the left inferior parietal lobe, and the right superior frontal lobe, which are the core brain regions involved in the sense of agency. The mean cortical thickness of the left inferior parietal lobe was significantly correlated with the independence of volitional quality (a mental trait that characterizes one’s intendency to control his/her own behavior and make decisions by applying internal standards and/or objective criteria). These findings suggest that sports training is an ideal model for better understanding the neural mechanisms of volitional behavior in the human brain.


2020 ◽  
Author(s):  
Ole Numssen ◽  
Danilo Bzdok ◽  
Gesa Hartwigsen

AbstractThe inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social cognition that define human interactions. Its putative domain-global role appears to tie into poorly understood functional differences between both hemispheres. Across attentional, semantic, and social cognitive experiments, our study explored hemispheric specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While each anterior IPL subregion was engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated lateralization effects within the IPL support some of the most distinctive human mental capacities.


Sign in / Sign up

Export Citation Format

Share Document