scholarly journals Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association

Neuron ◽  
2016 ◽  
Vol 90 (5) ◽  
pp. 1071-1085 ◽  
Author(s):  
Junuk Lee ◽  
Joel Finkelstein ◽  
Jung Yoon Choi ◽  
Ilana B. Witten
2015 ◽  
Vol 17 (2) ◽  
pp. 121-136 ◽  
Author(s):  
Shaimaa Nasr Amin ◽  
Ahmed Amro El-Aidi ◽  
Mohamed Mostafa Ali ◽  
Yasser Mahmoud Attia ◽  
Laila Ahmed Rashed

Author(s):  
Patricia S. Churchland ◽  
Terrence J. Sejnowski

This chapter examines the physical mechanisms in nervous systems in order to elucidate the structural bases and functional principles of synaptic plasticity. Neuroscientific research on plasticity can be divided into four main streams: the neural mechanism for relatively simple kinds of plasticity, such as classical conditioning or habituation; anatomical and physiological studies of temporal lobe structures, including the hippocampus and the amygdala; study of the development of the visual system; and the relation between the animal's genes and the development of its nervous system. The chapter first considers the role of the mammalian hippocampus in learning and memory before discussing Donald Hebb's views on synaptic plasticity. It then explores the mechanisms underlying neuronal plasticity and those that decrease synaptic strength, the relevance of time with respect to plasticity, and the occurrence of plasticity during the development of the nervous system. It also describes modules, modularity, and networks in the brain.


Cell ◽  
2011 ◽  
Vol 145 (2) ◽  
pp. 284-299 ◽  
Author(s):  
Jianmin Zhang ◽  
Yue Wang ◽  
Zhikai Chi ◽  
Matthew J. Keuss ◽  
Ying-Min Emily Pai ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Katharina Maria Hillerer ◽  
Volker Rudolf Jacobs ◽  
Thorsten Fischer ◽  
Ludwig Aigner

The time of pregnancy, birth, and lactation, is characterized by numerous specific alterations in several systems of the maternal body. Peripartum-associated changes in physiology and behavior, as well as their underlying molecular mechanisms, have been the focus of research since decades, but are still far from being entirely understood. Also, there is growing evidence that pregnancy and lactation are associated with a variety of alterations in neural plasticity, including adult neurogenesis, functional and structural synaptic plasticity, and dendritic remodeling in different brain regions. All of the mentioned changes are not only believed to be a prerequisite for the proper fetal and neonatal development, but moreover to be crucial for the physiological and mental health of the mother. The underlying mechanisms apparently need to be under tight control, since in cases of dysregulation, a certain percentage of women develop disorders like preeclampsia or postpartum mood and anxiety disorders during the course of pregnancy and lactation. This review describes common peripartum adaptations in physiology and behavior. Moreover, it concentrates on different forms of peripartum-associated plasticity including changes in neurogenesis and their possible underlying molecular mechanisms. Finally, consequences of malfunction in those systems are discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Michal Fila ◽  
Laura Diaz ◽  
Joanna Szczepanska ◽  
Elzbieta Pawlowska ◽  
Janusz Blasiak

Synaptic activity mediates information storage and memory consolidation in the brain and requires a fast de novo synthesis of mRNAs in the nucleus and proteins in synapses. Intracellular localization of a protein can be achieved by mRNA trafficking and localized translation. Activity-regulated cytoskeleton-associated protein (Arc) is a master regulator of synaptic plasticity and plays an important role in controlling large signaling networks implicated in learning, memory consolidation, and behavior. Transcription of the Arc gene may be induced by a short behavioral event, resulting in synaptic activation. Arc mRNA is exported into the cytoplasm and can be trafficked into the dendrite of an activated synapse where it is docked and translated. The structure of Arc is similar to the viral GAG (group-specific antigen) protein, and phylogenic analysis suggests that Arc may originate from the family of Ty3/Gypsy retrotransposons. Therefore, Arc might evolve through “domestication” of retroviruses. Arc can form a capsid-like structure that encapsulates a retrovirus-like sentence in the 3 ′ -UTR (untranslated region) of Arc mRNA. Such complex can be loaded into extracellular vesicles and transported to other neurons or muscle cells carrying not only genetic information but also regulatory signals within neuronal networks. Therefore, Arc mRNA inter- and intramolecular trafficking is essential for the modulation of synaptic activity required for memory consolidation and cognitive functions. Recent studies with single-molecule imaging in live neurons confirmed and extended the role of Arc mRNA trafficking in synaptic plasticity.


Sign in / Sign up

Export Citation Format

Share Document