Adenosine Promotes Endplate nAChR Channel Activity in Adult Mouse Skeletal Muscle Fibers via Low Affinity P1 Receptors

Neuroscience ◽  
2018 ◽  
Vol 383 ◽  
pp. 1-11 ◽  
Author(s):  
Annalisa Bernareggi ◽  
Elisa Ren ◽  
Arthur Giniatullin ◽  
Elisa Luin ◽  
Marina Sciancalepore ◽  
...  
2000 ◽  
Vol 278 (3) ◽  
pp. C473-C479 ◽  
Author(s):  
Nora Mallouk ◽  
Bruno Allard

High-conductance Ca2+-activated K+(KCa) channels were studied in mouse skeletal muscle fibers using the patch-clamp technique. In inside-out patches, application of negative pressure to the patch induced a dose-dependent and reversible activation of KCa channels. Stretch-induced increase in channel activity was found to be of the same magnitude in the presence and in the absence of Ca2+ in the pipette. The dose-response relationships between KCa channel activity and intracellular Ca2+ and between KCa channel activity and membrane potential revealed that voltage and Ca2+ sensitivity were not altered by membrane stretch. In cell-attached patches, in the presence of high external Ca2+ concentration, stretch-induced activation was also observed. We conclude that membrane stretch is a potential mode of regulation of skeletal muscle KCa channel activity and could be involved in the regulation of muscle excitability during contraction-relaxation cycles.


1998 ◽  
Vol 274 (4) ◽  
pp. C940-C946 ◽  
Author(s):  
Christopher D. Balnave ◽  
David G. Allen

The myoplasmic free Ca2+concentration ([Ca2+]i) was measured in intact single fibers from mouse skeletal muscle with the fluorescent Ca2+ indicator indo 1. Some fibers were perfused in a solution in which the concentration of Na+ was reduced from 145.4 to 0.4 mM (low-Na+solution) in an attempt to activate reverse-mode Na+/Ca2+exchange (Ca2+ entry in exchange for Na+ leaving the cell). Under normal resting conditions, application of low-Na+ solution only increased [Ca2+]iby 5.8 ± 1.8 nM from a mean resting [Ca2+]iof 42 nM. In other fibers, [Ca2+]iwas elevated by stimulating sarcoplasmic reticulum (SR) Ca2+ release with caffeine (10 mM) and by inhibiting SR Ca2+ uptake with 2,5-di( tert-butyl)-1,4-benzohydroquinone (TBQ; 0.5 μM) in an attempt to activate forward-mode Na+/Ca2+exchange (Ca2+ removal from the cell in exchange for Na+ influx). These two agents caused a large increase in [Ca2+]i, which then declined to a plateau level approximately twice the baseline [Ca2+]iover 20 min. If the cell was allowed to recover between exposures to caffeine and TBQ in a solution in which Ca2+ had been removed, the increase in [Ca2+]iduring the second exposure was very low, suggesting that Ca2+ had left the cell during the initial exposure. Application of caffeine and TBQ to a preparation in low-Na+ solution produced a large, sustained increase in [Ca2+]iof ∼1 μM. However, when cells were exposed to caffeine and TBQ in a low-Na+ solution in which Ca2+ had been removed, a sustained increase in [Ca2+]iwas not observed, although [Ca2+]iremained higher and declined slower than in normal Na+ solution. This suggests that forward-mode Na+/Ca2+exchange contributed to the fall of [Ca2+]iin normal Na+ solution, but when extracellular Na+ was low, a prolonged elevation of [Ca2+]icould activate reverse-mode Na+/Ca2+exchange. The results provide evidence that skeletal muscle fibers possess a Na+/Ca2+exchange mechanism that becomes active in its forward mode when [Ca2+]iis increased to levels similar to that obtained during contraction.


Channels ◽  
2012 ◽  
Vol 6 (4) ◽  
pp. 246-254 ◽  
Author(s):  
Tiffany C. Ho ◽  
Natalie A. Horn ◽  
Tuan Huynh ◽  
Lucy Kelava ◽  
Jeffry B. Lansman

2014 ◽  
Vol 69 (7) ◽  
pp. 821-830 ◽  
Author(s):  
A. T. Ludlow ◽  
E. E. Spangenburg ◽  
E. R. Chin ◽  
W.-H. Cheng ◽  
S. M. Roth

Sign in / Sign up

Export Citation Format

Share Document