cationic channel
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 7)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Rakhee Lohia ◽  
Jordy Le Guet ◽  
Laurence Berry ◽  
Helene Guizouarn ◽  
Roberto Bernal ◽  
...  

An inherited gain-of-function variant (E756 del) in the mechanosensitive cationic channel PIEZO1 was recently shown to confer a significant protection against severe malaria. Here, we demonstrate in vitro that human red blood cell (RBC) infection by Plasmodium falciparum is prevented by the pharmacological activation of PIEZO1. The PIEZO1 activator Yoda1 inhibits RBC invasion, without affecting parasite intraerythrocytic growth, division or egress. RBC dehydration, echinocytosis and intracellular Na+/K+ imbalance are unrelated to the mechanism of protection. Inhibition of invasion is maintained, even after a prolonged wash out of Yoda1. Similarly, the chemically unrelated activators Jedi1 and Jedi2 potently inhibit parasitemia, further indicating a PIEZO1-dependent mechanism. Notably, Yoda1 treatment significantly reduced RBC surface receptors of P. falciparum, and decreased merozoite attachment and subsequent RBC deformation. Altogether these data indicate that the pharmacological activation of Piezo1 in human RBCs inhibits malaria infection by impairing P. falciparum invasion.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Maxwell S. DeNies ◽  
Alan V. Smrcka ◽  
Santiago Schnell ◽  
Allen P. Liu

AbstractIt has become increasingly apparent that G protein-coupled receptor (GPCR) localization is a master regulator of cell signaling. However, the molecular mechanisms involved in this process are not well understood. To date, observations of intracellular GPCR activation can be organized into two categories: a dependence on OCT3 cationic channel-permeable ligands or the necessity of endocytic trafficking. Using CXC chemokine receptor 4 (CXCR4) as a model, we identified a third mechanism of intracellular GPCR signaling. We show that independent of membrane permeable ligands and endocytosis, upon stimulation, plasma membrane and internal pools of CXCR4 are post-translationally modified and collectively regulate EGR1 transcription. We found that β-arrestin-1 (arrestin 2) is necessary to mediate communication between plasma membrane and internal pools of CXCR4. Notably, these observations may explain that while CXCR4 overexpression is highly correlated with cancer metastasis and mortality, plasma membrane localization is not. Together these data support a model where a small initial pool of plasma membrane-localized GPCRs are capable of activating internal receptor-dependent signaling events.


2020 ◽  
Author(s):  
Maxwell S. DeNies ◽  
Alan Smrcka ◽  
Santiago Schnell ◽  
Allen P. Liu

AbstractIt has become increasingly apparent that G protein-coupled receptor (GPCR) localization is a master regulator of cell signaling. However, the molecular mechanisms involved in this process are not well understood. To date, observations of intracellular GPCR activation can be organized into two categories: a dependence on OCT3 cationic channel-permeable ligands or the necessity of endocytic trafficking. Using CXC chemokine receptor 4 (CXCR4) as a model, we identified a third mechanism of intracellular GPCR signaling. We show that independent of membrane permeable ligands and endocytosis, upon stimulation, plasma membrane and internal pools of CXCR4 are post-translationally modified and collectively regulate EGR1 transcription. We found that β-arrestin-1 (arrestin 2) is necessary to mediate communication between plasma membrane and internal pools of CXCR4. Notably, these observations may explain that while CXCR4 overexpression is highly correlated with cancer metastasis and mortality, plasma membrane localization is not. Together these data support a model were a small initial pool of plasma membrane-localized GPCRs are capable of activating internal receptor-dependent signaling events.


2019 ◽  
Vol 20 (15) ◽  
pp. 3780 ◽  
Author(s):  
Ting Yang ◽  
Wenying Zhang ◽  
Jie Cheng ◽  
Yanhong Nie ◽  
Qi Xin ◽  
...  

Channelrhodopsin-2 (ChR2) is a light-activated and non-selective cationic channel protein that can be easily expressed in specific neurons to control neuronal activity by light. Although ChR2 has been extensively used as an optogenetic tool in neuroscience research, the molecular mechanism of cation channel formation following retinal photoisomerization in ChR2 is not well understood. In this paper, studies of the closed and opened state ChR2 structures are presented. The formation of the cationic channel is elucidated in atomic detail using molecular dynamics simulations on the all-trans-retinal (ChR2-trans) configuration of ChR2 and its isomerization products, 13-cis-retinal (ChR2-cis) configuration, respectively. Photoisomerization of the retinal-chromophore causes the destruction of interactions among the crucial residues (e.g., E90, E82, N258, and R268) around the channel and the extended H-bond network mediated by numerous water molecules, which opens the pore. Steering molecular dynamics (SMD) simulations show that the electrostatic interactions at the binding sites in intracellular gate (ICG) and central gate (CG) can influence the transmembrane transport of Na+ in ChR2-cis obviously. Potential of mean force (PMF) constructed by SMD and umbrella sampling also found the existing energy wells at these two binding sites during the transportation of Na+. These wells partly hinder the penetration of Na+ into cytoplasm through the ion channel. This investigation provides a theoretical insight on the formation mechanism of ion channels and the mechanism of ion permeation.


2019 ◽  
Vol 20 (12) ◽  
pp. 2906 ◽  
Author(s):  
Simona Giorgi ◽  
Magdalena Nikolaeva-Koleva ◽  
David Alarcón-Alarcón ◽  
Laura Butrón ◽  
Sara González-Rodríguez

Over the last decades, a great array of molecular mediators have been identified as potential targets for the treatment of chronic pain. Among these mediators, transient receptor potential (TRP) channel superfamily members have been thoroughly studied. Namely, the nonselective cationic channel, transient receptor potential ankyrin subtype 1 (TRPA1), has been described as a chemical nocisensor involved in noxious cold and mechanical sensation and as rivalling TRPV1, which traditionally has been considered as the most important TRP channel involved in nociceptive transduction. However, few TRPA1-related drugs have succeeded in clinical trials. In the present review, we attempt to discuss the latest data on the topic and future directions for pharmacological intervention.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kodappully S. Siveen ◽  
Kirti S. Prabhu ◽  
Aeijaz S. Parray ◽  
Maysaloun Merhi ◽  
Abdelilah Arredouani ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Gabriele Stephan ◽  
Lumei Huang ◽  
Yong Tang ◽  
Sandra Vilotti ◽  
Elsa Fabbretti ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Gabriele Stephan ◽  
Lumei Huang ◽  
Yong Tang ◽  
Sandra Vilotti ◽  
Elsa Fabbretti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document