Resting-State Functional Connectivity Underlying Costly Punishment: A Machine-Learning Approach

Neuroscience ◽  
2018 ◽  
Vol 385 ◽  
pp. 25-37 ◽  
Author(s):  
Chunliang Feng ◽  
Zhiyuan Zhu ◽  
Ruolei Gu ◽  
Xia Wu ◽  
Yue-Jia Luo ◽  
...  
Diabetologia ◽  
2021 ◽  
Author(s):  
Kevin Teh ◽  
Iain D. Wilkinson ◽  
Francesca Heiberg-Gibbons ◽  
Mohammed Awadh ◽  
Alan Kelsall ◽  
...  

Abstract Aims/hypothesis The aim of this work was to investigate whether different clinical pain phenotypes of diabetic polyneuropathy (DPN) are distinguished by functional connectivity at rest. Methods This was an observational, cohort study of 43 individuals with painful DPN, divided into irritable (IR, n = 10) and non-irritable (NIR, n = 33) nociceptor phenotypes using the German Research Network of Neuropathic Pain quantitative sensory testing protocol. In-situ brain MRI included 3D T1-weighted anatomical and 6 min resting-state functional MRI scans. Subgroup differences in resting-state functional connectivity in brain regions involved with somatic (thalamus, primary somatosensory cortex, motor cortex) and non-somatic (insular and anterior cingulate cortices) pain processing were examined. Multidimensional reduction of MRI datasets was performed using a machine-learning approach to classify individuals into each clinical pain phenotype. Results Individuals with the IR nociceptor phenotype had significantly greater thalamic–insular cortex (p false discovery rate [FDR] = 0.03) and reduced thalamus–somatosensory cortex functional connectivity (p-FDR = 0.03). We observed a double dissociation such that self-reported neuropathic pain score was more associated with greater thalamus–insular cortex functional connectivity (r = 0.41; p = 0.01) whereas more severe nerve function deficits were more related to lower thalamus–somatosensory cortex functional connectivity (r = −0.35; p = 0.03). Machine-learning group classification performance to identify individuals with the NIR nociceptor phenotype achieved an accuracy of 0.92 (95% CI 0.08) and sensitivity of 90%. Conclusions/interpretation This study demonstrates differences in functional connectivity in nociceptive processing brain regions between IR and NIR phenotypes in painful DPN. We also establish proof of concept for the utility of multimodal MRI as a biomarker for painful DPN by using a machine-learning approach to classify individuals into sensory phenotypes. Graphical abstract


2021 ◽  
Vol 30 ◽  
pp. 102617
Author(s):  
Kaia Sargent ◽  
UnYoung Chavez-Baldini ◽  
Sarah L. Master ◽  
Karin J.H. Verweij ◽  
Anja Lok ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Bidhan Lamichhane ◽  
Andy G. S. Daniel ◽  
John J. Lee ◽  
Daniel S. Marcus ◽  
Joshua S. Shimony ◽  
...  

Glioblastoma multiforme (GBM) is the most frequently occurring brain malignancy. Due to its poor prognosis with currently available treatments, there is a pressing need for easily accessible, non-invasive techniques to help inform pre-treatment planning, patient counseling, and improve outcomes. In this study we determined the feasibility of resting-state functional connectivity (rsFC) to classify GBM patients into short-term and long-term survival groups with respect to reported median survival (14.6 months). We used a support vector machine with rsFC between regions of interest as predictive features. We employed a novel hybrid feature selection method whereby features were first filtered using correlations between rsFC and OS, and then using the established method of recursive feature elimination (RFE) to select the optimal feature subset. Leave-one-subject-out cross-validation evaluated the performance of models. Classification between short- and long-term survival accuracy was 71.9%. Sensitivity and specificity were 77.1 and 65.5%, respectively. The area under the receiver operating characteristic curve was 0.752 (95% CI, 0.62–0.88). These findings suggest that highly specific features of rsFC may predict GBM survival. Taken together, the findings of this study support that resting-state fMRI and machine learning analytics could enable a radiomic biomarker for GBM, augmenting care and planning for individual patients.


2018 ◽  
Author(s):  
Bun Yamagata ◽  
Takashi Itahashi ◽  
Junya Fujino ◽  
Haruhisa Ohta ◽  
Motoaki Nakamura ◽  
...  

AbstractEndophenotype refers to a measurable and heritable component between genetics and diagnosis and exists in both individuals with a diagnosis and their unaffected siblings. We aimed to identify a pattern of endophenotype consisted of multiple connections. We enrolled adult male individuals with autism spectrum disorder (ASD) endophenotype (i.e., individuals with ASD and their unaffected siblings) and individuals without ASD endophenotype (i.e., pairs of typical development (TD) siblings) and utilized a machine learning approach to classify people with and without endophenotypes, based on resting-state functional connections (FCs). A sparse logistic regression successfully classified people as to the endophenotype (area under the curve=0.78, classification accuracy=75%), suggesting the existence of endophenotype pattern. A binomial test identified that nine FCs were consistently selected as inputs for the classifier. The least absolute shrinkage and selection operator with these nine FCs predicted severity of communication impairment among individuals with ASD (r=0.68, p=0.021). In addition, two of the nine FCs were statistically significantly correlated with the severity of communication impairment (r=0.81, p=0.0026 and r=-0.60, p=0.049). The current findings suggest that an ASD endophenotype pattern exists in FCs with a multivariate manner and is associated with clinical ASD phenotype.


Sign in / Sign up

Export Citation Format

Share Document