Hypoxia Inducible Factor-1α (HIF-1α) Mediates NLRP3 Inflammasome-Dependent-Pyroptotic and Apoptotic Cell Death Following Ischemic Stroke

Neuroscience ◽  
2020 ◽  
Vol 448 ◽  
pp. 126-139 ◽  
Author(s):  
Qian Jiang ◽  
Xiaokun Geng ◽  
Jonathan Warren ◽  
Eric Eugene Paul Cosky ◽  
Shawn Kaura ◽  
...  
Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Sweena Parmar ◽  
Xiaokun Geng ◽  
Changya Peng ◽  
Murali Guthikonda ◽  
Yuchuan Ding

Objectives: Normobaric oxygenation (NBO) has been shown to provide neuroprotection in vivo and in vitro . Yet, a recent Phase 2 clinical trial investigating NBO therapy in acute ischemic stroke was terminated due to questionable therapeutic benefit. NBO therapy alone may be insufficient to produce improved outcomes. In our recent study, we demonstrated a strong neuroprotective effect of ethanol at a dose of 1.5 g/kg (equivalent to the human legal driving limit). In this study, we sought to identify whether low-dose ethanol administration enhances the neuroprotection offered by NBO and whether combined administration of NBO with ethanol is associated with reduced apoptosis. Methods: Sprague-Dawley rats were subjected to right middle cerebral artery occlusion (MCAO) for 2 h, followed by reperfusion. Ischemic animals received either an intraperitoneal injection of 1.0 g/kg ethanol, 2 h of 100% NBO, or both ethanol and NBO. The Cell Death Detection ELISA Assay (Roche) was performed to determine apoptotic cell death at 24 h after reperfusion. Levels of pro-apoptotic (Caspase-3, Bcl-2-associated X-BAX, and Apoptosis-Inducing Factor-AIF) and anti-apoptotic proteins (Bcl-2 and Bcl-xL) were determined by Western blot analysis at 3 and 24 h after reperfusion. Results: As expected, untreated ischemic rats had the highest apoptotic cell death. Combined NBO/ethanol therapy decreased cell death by 48%, as compared to 29% with ethanol and 22% with NBO. Similarly, combined NBO/ethanol therapy promoted the greatest expression of anti-apoptotic factors and the lowest expression of pro-apoptotic proteins at 3 h after reperfusion. This effect was maintained at 24 h and even more pronounced for AIF and Caspase-3. Conclusions: Given singularly, NBO and ethanol improved the degree of cell death, decreased the expression of pro-apoptotic proteins, and increased the expression of anti-apoptotic proteins. Yet, when administered together, their effects largely compounded. These results suggest a synergistic neuroprotection offered by NBO with ethanol, which may be attributed at least in part to their shared role in modulating neuronal apoptosis.


2015 ◽  
Vol 84 (1) ◽  
pp. 172-186 ◽  
Author(s):  
Moo-Seung Lee ◽  
Haenaem Kwon ◽  
Eun-Young Lee ◽  
Dong-Jae Kim ◽  
Jong-Hwan Park ◽  
...  

Shiga toxin (Stx)-mediated immune responses, including the production of the proinflammatory cytokines tumor necrosis-α (TNF-α) and interleukin-1β (IL-1β), may exacerbate vascular damage and accelerate lethality. However, the immune signaling pathway activated in response to Stx is not well understood. Here, we demonstrate that enzymatically active Stx, which leads to ribotoxic stress, triggers NLRP3 inflammasome-dependent caspase-1 activation and IL-1β secretion in differentiated macrophage-like THP-1 (D-THP-1) cells. The treatment of cells with a chemical inhibitor of glycosphingolipid biosynthesis, which suppresses the expression of the Stx receptor globotriaosylceramide and subsequent endocytosis of the toxin, substantially blocked activation of the NLRP3 inflammasome and processing of caspase-1 and IL-1β. Processing and release of both caspase-1 and IL-1β were significantly reduced or abolished in Stx-intoxicated D-THP-1 cells in which the expression of NLRP3 or ASC was stably knocked down. Furthermore, Stx mediated the activation of caspases involved in apoptosis in an NLRP3- or ASC-dependent manner. In Stx-intoxicated cells, the NLRP3 inflammasome triggered the activation of caspase-8/3, leading to the initiation of apoptosis, in addition to caspase-1-dependent pyroptotic cell death. Taken together, these results suggest that Stxs trigger the NLRP3 inflammasome pathway to release proinflammatory IL-1β as well as to promote apoptotic cell death.


Physiology ◽  
2014 ◽  
Vol 29 (3) ◽  
pp. 168-176 ◽  
Author(s):  
Ataman Sendoel ◽  
Michael O. Hengartner

Eukaryotic life depends largely on molecular oxygen. During evolution, ingenious mechanisms have evolved that allow organisms to adapt when oxygen levels decrease. Many of these adaptional responses to low oxygen are orchestrated by the heterodimeric transcription factor hypoxia-inducible factor (HIF). Here, we review the link between HIF and apoptosis.


2004 ◽  
Vol 24 (9) ◽  
pp. 3918-3927 ◽  
Author(s):  
Mi-Jung Lee ◽  
Jee-Youn Kim ◽  
Kyoungho Suk ◽  
Jae-Hoon Park

ABSTRACT Hypoxia-inducible factor 1α (HIF-1α) controls the cellular responses to hypoxia, activating transcription of a range of genes involved in adaptive processes such as increasing glycolysis and promoting angiogenesis. However, paradoxically, HIF-1α also participates in hypoxic cell death. Several gene products, such as BNip3, RTP801, and Noxa, were identified as HIF-1α-responsive proapoptotic proteins, but the complicated hypoxic cell death pathways could not be completely explained by the few known genes. Moreover, molecules linking the proapoptotic signals of HIF-1α directly to mitochondrial permeability transition are missing. In this work, we report the identification of an HIF-1α-responsive proapoptotic molecule, HGTD-P. Its expression was directly regulated by HIF-1α through a hypoxia-responsive element on the HGTD-P promoter region. When overexpressed, HGTD-P was localized to mitochondria and facilitated apoptotic cell death via typical mitochondrial apoptotic cascades, including permeability transition, cytochrome c release, and caspase 9 activation. In the process of permeability transition induction, the death-inducing domain of HGTD-P physically interacted with the voltage-dependent anion channel. In addition, suppression of HGTD-P expression by small interfering RNA or antisense oligonucleotides protected against hypoxic cell death. Taken together, our data indicate that HGTD-P is a new HIF-1α-responsive proapoptotic molecule that activates mitochondrial apoptotic cascades.


Sign in / Sign up

Export Citation Format

Share Document