scholarly journals Real-time fMRI amygdala neurofeedback positive emotional training normalized resting-state functional connectivity in combat veterans with and without PTSD: a connectome-wide investigation

2018 ◽  
Vol 20 ◽  
pp. 543-555 ◽  
Author(s):  
Masaya Misaki ◽  
Raquel Phillips ◽  
Vadim Zotev ◽  
Chung-Ki Wong ◽  
Brent E. Wurfel ◽  
...  
2017 ◽  
Vol 12 (12) ◽  
pp. 1881-1889 ◽  
Author(s):  
Tim Varkevisser ◽  
Thomas E Gladwin ◽  
Lieke Heesink ◽  
Jack van Honk ◽  
Elbert Geuze

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Zhonglin Li ◽  
Li Tong ◽  
Min Guan ◽  
Wenjie He ◽  
Linyuan Wang ◽  
...  

Real-time fMRI neurofeedback (rtfMRI-nf) is a promising tool for enhancing emotion regulation capability of subjects and for the potential alleviation of neuropsychiatric disorders. The amygdala is composed of structurally and functionally distinct nuclei, such as the basolateral amygdala (BLA) and centromedial amygdala (CMA), both of which are involved in emotion processing, generation, and regulation. However, the effect of rtfMRI-nf on the resting-state functional connectivity (rsFC) of BLA and CMA remains to be elucidated. In our study, participants were provided with ongoing information on their emotion states by using real-time multivariate voxel pattern analysis. Results showed that participants presented significantly increased rsFC of BLA and CMA with prefrontal cortex, rostral anterior cingulate cortex, and some others related to emotion after rtfMRI-nf training. The findings provide important evidence for the emotion regulation effectiveness of rtfMRI-nf training and indicate its usefulness as a tool for the self-regulation of emotion.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1889-P
Author(s):  
ALLISON L.B. SHAPIRO ◽  
SUSAN L. JOHNSON ◽  
BRIANNE MOHL ◽  
GRETA WILKENING ◽  
KRISTINA T. LEGGET ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria J. S. Guerreiro ◽  
Madita Linke ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
Brigitte Röder

AbstractLower resting-state functional connectivity (RSFC) between ‘visual’ and non-‘visual’ neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition—as well as to evaluate the effect of resting state condition on group differences in RSFC—, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between ‘visual’ and non-‘visual’ circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.


Sign in / Sign up

Export Citation Format

Share Document