An innovative concept for acceleration of low-energy low-charge-state heavy-ion beams

Author(s):  
P.N. Ostroumov ◽  
A.A. Kolomiets ◽  
S. Sharma ◽  
N.E. Vinogradov ◽  
G.P. Zinkann
2019 ◽  
Vol 49 (1) ◽  
pp. 25-28
Author(s):  
F.M. Kröger ◽  
G. Weber ◽  
V.P. Shevelko ◽  
S. Hirlaender ◽  
M.W. Krasny ◽  
...  
Keyword(s):  

2009 ◽  
Vol 18 (10) ◽  
pp. 2160-2168 ◽  
Author(s):  
A. DROUART ◽  
J. A. NOLEN ◽  
H. SAVAJOLS

The Super Separator Spectrometer (S3) will receive the very high intensity heavy ion beams from the LINAG accelerator of SPIRAL2. Its privileged fields of physics are the delayed study of rare nuclei and secondary reactions with exotic nuclei. The project is presently in a phase of conceptual design. It includes a rotating target to sustain the high energy deposit, a two stages separator (momentum achromat) and spectrometer (mass spectrometer). Various detection set-ups are foreseen, especially a delayed α, γ, and electron spectroscopy array and a gas catcher coupled to a low energy branch. We present here the current status of the project and its main features.


1979 ◽  
Vol 26 (2) ◽  
pp. 2164-2166 ◽  
Author(s):  
R. A. Gough ◽  
D. J. Clark ◽  
L. R. Glasgow

2002 ◽  
Vol 20 (4) ◽  
pp. 551-554 ◽  
Author(s):  
D. MUELLER ◽  
L. GRISHAM ◽  
I. KAGANOVICH ◽  
R.L. WATSON ◽  
V. HORVAT ◽  
...  

One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 MeV/amu with charge state 1 currently do not exist. Hence, the stripping cross sections used to model the performance of heavy ion fusion driver beams have, up to now, been based on theoretical calculations. We have investigated experimentally the stripping of 3.4 MeV/amu Kr+7 and Xe+11 in N2; 10.2 MeV/amu Ar+6 in He, N2, Ar, and Xe; 19 MeV/amu Ar+8 in He, N2, Ar, and Xe; 30 MeV He+1 in He, N2, Ar, and Xe; and 38 MeV/amu N+6 in He, N2, Ar, and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters.


2008 ◽  
Vol 43 ◽  
pp. S79-S81 ◽  
Author(s):  
Ippei Ishikawa ◽  
Atsuya Kishi ◽  
Wataru Kada ◽  
Fuminobu Sato ◽  
Yushi Kato ◽  
...  

2015 ◽  
Vol 33 (3) ◽  
pp. 333-344 ◽  
Author(s):  
G. K. Parks ◽  
E. Lee ◽  
S. Y. Fu ◽  
M. Fillingim ◽  
I. Dandouras ◽  
...  

Abstract. Numerous observations have shown that ions flow out of the ionosphere during substorms with more fluxes leaving as the substorm intensity increases (Wilson et al., 2004). In this article we show observations of low-energy (few tens of electron volts) ionospheric ions flowing out periods without substorms, determined using the Wideband Imaging Camera (WIC) and Auroral Electrojet (AE) indices. We use Cluster ion composition data and show the outflowing ions are field-aligned H+, He+ and O+ beams accelerated to energies of ~40–80 eV, after correcting for spacecraft potential. The estimated fluxes of the low-energy O+ ions measured at ~20 000 km altitude are >103–105 cm−2 s. Assuming the auroral oval is the source of the escaping ions, the measured fluxes correspond to a flow rate of ~1019–1021 ions s−1 leaving the ionosphere. However, periods without substorms can persist for hours suggesting the low-energy ions flowing out during these times could be a major source of the heavy ion population in the plasma sheet and lobe.


Sign in / Sign up

Export Citation Format

Share Document