A two-dimensional detector for pump-and-probe and time resolved experiments

Author(s):  
G. Cautero ◽  
R. Sergo ◽  
L. Stebel ◽  
P. Lacovig ◽  
P. Pittana ◽  
...  
Nanoscale ◽  
2015 ◽  
Vol 7 (16) ◽  
pp. 7402-7408 ◽  
Author(s):  
Long Yuan ◽  
Libai Huang

We systematically investigate the exciton dynamics in monolayered, bilayered, and trilayered WS2 two-dimensional (2D) crystals by time-resolved photoluminescence (TRPL) spectroscopy.


2003 ◽  
Vol 36 (3) ◽  
pp. 809-811 ◽  
Author(s):  
Volker Urban ◽  
Pierre Panine ◽  
Cyril Ponchut ◽  
Peter Boesecke ◽  
Theyencheri Narayanan

2012 ◽  
Vol 159 (1) ◽  
pp. 291-305 ◽  
Author(s):  
Steven G. Tuttle ◽  
Swetaprovo Chaudhuri ◽  
Stanislav Kostka ◽  
Kristin M. Kopp-Vaughan ◽  
Trevor R. Jensen ◽  
...  

2010 ◽  
Vol 428-429 ◽  
pp. 475-478 ◽  
Author(s):  
Bao Gai Zhai ◽  
Yuan Ming Huang

The optical properties and electronic structures of an organic semiconductor sexithiophene have been investigated with ultraviolet-visible spectroscopy, cw photospectroscopy and time-resolved photospectroscopy, respectively. Sexithiophene in dilute tetrahydrofuran solutions can absorb photons at 400 nm while it can give off strong green photoluminescence at 550 nm under the excitation of 325 nm ultraviolet light. With the assistance of calculated electronic structures and pump-and-probe characterization, our results indicate that both the optical absorption and the light emission of the sexithiophene are controlled by the p-conjugation of the oligothiophene.


2013 ◽  
Vol 54 (7) ◽  
Author(s):  
Simo A. Mäkiharju ◽  
Celine Gabillet ◽  
Bu-Geun Paik ◽  
Natasha A. Chang ◽  
Marc Perlin ◽  
...  

2001 ◽  
Vol 15 (28n30) ◽  
pp. 3965-3968
Author(s):  
ATSUSHI SUGITA ◽  
TAKASHI SAITO ◽  
TAKAYOSHI KOBAYASHI ◽  
MASAHIRO YAMASHITA

A quasi-one-dimensional halogen-bridged mixed-valence metal complex is studied by time-resolved pump and probe spectroscopy with sub-5 fs time resolution. Two kinds of oscillatory signals are observed, which are attributed to the wave packet motions both in an electronic ground state and in a self-trapped exciton (STE) state. The onset of the wave packet motion is found to be delayed by about 50 fs, comparing with the ideal wave packet in the electronic excited state. The delay reflects the thermalization process in a free exciton (FE) state and a lattice relaxation process from FE to STE states.


Sign in / Sign up

Export Citation Format

Share Document