Particle beam and X-ray imaging with thin CsI scintillating plates

Author(s):  
L. Cosentino ◽  
P. Finocchiaro
Keyword(s):  
X Ray ◽  
2001 ◽  
Vol 48 (4) ◽  
pp. 1132-1136 ◽  
Author(s):  
L. Cosentino ◽  
P. Finocchiaro
Keyword(s):  
X Ray ◽  

1979 ◽  
Vol 23 ◽  
pp. 263-272
Author(s):  
N. Gurker

Element mapping has been so far an analytical field covered by those investigation methods using a scanned particle beam on the excitation side of the specimen. These methods include localized interaction processes, as in the electron microprobe, secondary ion mass spectrometer and Auger electron spectrometer. On the other hand, methods which use a stationary radiation beam on the input side (non-localized interaction) usually give summarized information about the sample area (X-ray fluorescence spectrometry, photoelectron spectrometry, …). This paper deals with an approach to extending the application field of X-ray fluorescence analysis (XRFA) to element mapping. Fig. 1 shows the main components of the X-ray imaging system. Since modern SRF systems often work under computer control, the only additional hardware components of the system are a scanned sample holder and an X-ray source producing a line-shaped X-ray beam. The computer is usually not used for ease, speed or convenience of operation, but is used to generate the element image and process all the collected fluorescence data.


Author(s):  
M.G. Baldini ◽  
S. Morinaga ◽  
D. Minasian ◽  
R. Feder ◽  
D. Sayre ◽  
...  

Contact X-ray imaging is presently developing as an important imaging technique in cell biology. Our recent studies on human platelets have demonstrated that the cytoskeleton of these cells contains photondense structures which can preferentially be imaged by soft X-ray imaging. Our present research has dealt with platelet activation, i.e., the complex phenomena which precede platelet appregation and are associated with profound changes in platelet cytoskeleton. Human platelets suspended in plasma were used. Whole cell mounts were fixed and dehydrated, then exposed to a stationary source of soft X-rays as previously described. Developed replicas and respective grids were studied by scanning electron microscopy (SEM).


Author(s):  
James F. Mancuso ◽  
William B. Maxwell ◽  
Russell E. Camp ◽  
Mark H. Ellisman

The imaging requirements for 1000 line CCD camera systems include resolution, sensitivity, and field of view. In electronic camera systems these characteristics are determined primarily by the performance of the electro-optic interface. This component converts the electron image into a light image which is ultimately received by a camera sensor.Light production in the interface occurs when high energy electrons strike a phosphor or scintillator. Resolution is limited by electron scattering and absorption. For a constant resolution, more energy deposition occurs in denser phosphors (Figure 1). In this respect, high density x-ray phosphors such as Gd2O2S are better than ZnS based cathode ray tube phosphors. Scintillating fiber optics can be used instead of a discrete phosphor layer. The resolution of scintillating fiber optics that are used in x-ray imaging exceed 20 1p/mm and can be made very large. An example of a digital TEM image using a scintillating fiber optic plate is shown in Figure 2.


Author(s):  
Ann LeFurgey ◽  
Peter Ingram ◽  
J.J. Blum ◽  
M.C. Carney ◽  
L.A. Hawkey ◽  
...  

Subcellular compartments commonly identified and analyzed by high resolution electron probe x-ray microanalysis (EPXMA) include mitochondria, cytoplasm and endoplasmic or sarcoplasmic reticulum. These organelles and cell regions are of primary importance in regulation of cell ionic homeostasis. Correlative structural-functional studies, based on the static probe method of EPXMA combined with biochemical and electrophysiological techniques, have focused on the role of these organelles, for example, in maintaining cell calcium homeostasis or in control of excitation-contraction coupling. New methods of real time quantitative x-ray imaging permit simultaneous examination of multiple cell compartments, especially those areas for which both membrane transport properties and element content are less well defined, e.g. nuclei including euchromatin and heterochromatin, lysosomes, mucous granules, storage vacuoles, microvilli. Investigations currently in progress have examined the role of Zn-containing polyphosphate vacuoles in the metabolism of Leishmania major, the distribution of Na, K, S and other elements during anoxia in kidney cell nuclel and lysosomes; the content and distribution of S and Ca in mucous granules of cystic fibrosis (CF) nasal epithelia; the uptake of cationic probes by mltochondria in cultured heart ceils; and the junctional sarcoplasmic retlculum (JSR) in frog skeletal muscle.


2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-583-Pr9-588 ◽  
Author(s):  
W. A. Gooch ◽  
M. S. Burkins ◽  
G. Hauver ◽  
P. Netherwood ◽  
R. Benck
Keyword(s):  
X Ray ◽  

2020 ◽  
Author(s):  
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document