Elemental analyses on porcelains of Tang and Song Dynasties excavated from Yongjinwan zone at Jinsha site

Author(s):  
C.D. Xia ◽  
L.J. Ge ◽  
M.T. Liu ◽  
J.J. Zhu ◽  
Z. An ◽  
...  
2019 ◽  
Author(s):  
Chem Int

A series of novel 1, 3, 4-oxadiazole analogues was synthesized from cyclization of hydrazones of substituted 1-ethyl-1,4-dihydro-7-methyl-4-oxo-1,8-naphthyridine-3-carbohydrazides were prepared from nalidixic acid. The structures of synthesized oxadiazole derivatives and their copper complexes were elucidated on the basis of FTIR, elemental analyses, 1H-NMR and atomic absorption spectral analysis. It was observed from spectral data that metal ligand ratio was 1:1 in all copper complexes and they were bidentate, coordination was found to be done through oxygen of 4-oxo group and nitrogen of oxadiazole ring. The synthesized compounds were further evaluated with biological activities and compared with parent hydrazones. Copper complexes possess antibacterial and antifungal activities better than the oxadiazoles while they have better antioxidant activity then copper complexes. Parent hydrazones were better in all biological activities than synthesized oxadiazoles.


2019 ◽  
Vol 19 (16) ◽  
pp. 1292-1297 ◽  
Author(s):  
Ali Mohd Ganie ◽  
Ayaz Mahmood Dar ◽  
Fairooz Ahmad Khan ◽  
Bashir Ahmad Dar

:Here in we report the number of strategies for the synthesis of differently substituted benzimidazole derivatives. The protocols involved in the syntheses of these derivatives were one-pot or multi-component. The characterization studies of these derivatives were carried by using different spectroscopic techniques (1H NMR, 13C NMR and MS) and elemental analyses. The biological screening studies revealed that these benzimidazole derivatives show potential antibacterial as well as antifungal behavior. These benzimidazole derivatives not only depicted potential antiulcer properties but also showed moderate to good anticancer/cytotoxic behavior against different cancer cell lines.


2020 ◽  
Vol 17 (11) ◽  
pp. 832-836
Author(s):  
Manijeh Nematpour ◽  
Hossein Fasihi Dastjerdi ◽  
Mehdi Jahani ◽  
Sayyed Abbas Tabatabai

A simple and appropriate procedure for the synthesis of quinazoline-2,4(1H,3H)-dione derivatives from isocyanides, aniline and isocyanate via the Cu-catalyzed intramolecular C-H activation reaction is reported. The advantages of this method are one-pot conditions, accessible starting materials- catalyst, high yield of products, and short reaction times. The structures are confirmed spectroscopically (1H- and 13C-NMR, IR and EI-MS) and by elemental analyses.


2020 ◽  
Vol 17 ◽  
Author(s):  
W. Abd El-Fattah

: In this work, 1,2,4-triazine derivatives were synthesized and evaluated for anticancer activities. Series of 1,2,4-triazine derivatives (4a, b) were prepared via the reaction of N-benzoyl glycine (1) with aromatic aldehydes in presence of fused sodium acetate and acetic anhydride to give 1,3-oxazolinone derivatives (2a, b), followed by condensation with 1-(ethoxycarbonyl) hydrazine (3) in glacial acetic acid. Compounds (4a, b) then reacted with acetic anhydride, ethyl chloroacetate and 2,4-dinitrophenyl hydrazine yielded the corresponding to N-acetyl derivatives (5a, b), N-(ethoxycarbonyl) methyl derivative (6) and 1,2-disubstituted hydrazine (7), respectively. The structures of the 1,2,4-triazine derivatives were confirmed by IR, 1H, 13C NMR, MS and elemental analyses. Anticancer activity of some 1,2,4-triazine derivatives (4-7) have been investigated. The results revealed that compounds 4a (IC50= 2.7μM), 5a (IC50= 1.5μM), and 5b (IC50= 3.9μM) show promising inhibitory growth efficacy compared to a standard antitumor drug (IC50= 4.6μM). These three compounds can be considered as potential agents against human hepatocellular carcinoma cell lines (HepG-2).


1998 ◽  
Vol 63 (3) ◽  
pp. 363-370 ◽  
Author(s):  
Violetta Patroniak-Krzyminiewska ◽  
Wanda Radecka-Paryzek

The template reactions of 2,6-diacetylpyridine with 3,6-dioxaoctane-1,8-diamine in the presence of dysprosium(III), thulium(III) and lutetium(III) chlorides and erbium(III) perchlorate produce the complexes of 15-membered macrocyclic ligand with an N3O2 set of donor atoms as a result of the [1+1] Schiff base cyclocondensation. In contrast, analogous reactions involving the lighter lanthanide ions (lanthanum(III), samarium(III) and europium(III)) yield the acyclic complexes with terminal acetylpyridyl groupings as products of the partial [2+1] condensation. The complexes were characterized by spectral data (IR, UV-VIS, 1H NMR, MS), and thermogravimetric and elemental analyses.


2020 ◽  
Vol 18 (1) ◽  
pp. 287-294
Author(s):  
Harsasi Setyawati ◽  
Handoko Darmokoesoemo ◽  
Irmina Kris Murwani ◽  
Ahmadi Jaya Permana ◽  
Faidur Rochman

AbstractThe demands of ecofriendly technologies to produce a reliable supply of renewable energy on a large scale remains a challenge. A solar cell based on DSSC (Dye-Sensitized Solar Cell) technology is environmentally friendly and holds the promise of a high efficiency in converting sunlight into electricity. This manuscript describes the development of a light harvester system as a main part of a DSSC. Congo red dye has been functionalized with metals (Fe, Co, Ni), forming a series of complexes that serve as a novel light harvester on the solar cell. Metal-congo red complexes have been characterized by UV-VIS and FTIR spectroscopy, and elemental analyses. The performance of metal complexes in capturing photons from sunlight has been investigated in a solar cell device. The incorporation of metals to congo red successfully improved of the congo red efficiency as follows: Fe(II)-congo red, Co(II)-congo red and Ni(II)-congo red had efficiencies of 8.17%, 6.13% and 2.65%, respectively. This research also discusses the effect of metal ions on the ability of congo red to capture energy from sunlight.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1172
Author(s):  
Leonard Moser ◽  
Christina Penke ◽  
Valentin Batteiger

One of the more promising technologies for future renewable fuel production from biomass is hydrothermal liquefaction (HTL). Although enormous progress in the context of continuous experiments on demonstration plants has been made in the last years, still many research questions concerning the understanding of the HTL reaction network remain unanswered. In this study, a unique process model of an HTL process chain has been developed in Aspen Plus® for three feedstock, microalgae, sewage sludge and wheat straw. A process chain consisting of HTL, hydrotreatment (HT) and catalytic hydrothermal gasification (cHTG) build the core process steps of the model, which uses 51 model compounds representing the hydrolysis products of the different biochemical groups lipids, proteins, carbohydrates, lignin, extractives and ash for modeling the biomass. Two extensive reaction networks of 272 and 290 reactions for the HTL and HT process step, respectively, lead to the intermediate biocrude (~200 model compounds) and the final upgraded biocrude product (~130 model compounds). The model can reproduce important characteristics, such as yields, elemental analyses, boiling point distribution, product fractions, density and higher heating values of experimental results from continuous experiments as well as literature values. The model can be applied as basis for techno-economic and environmental assessments of HTL fuel production, and may be further developed into a predictive yield modeling tool.


2021 ◽  
Author(s):  
Gaetano Campi ◽  
Lorenza Suber ◽  
Giuliana Righi ◽  
Ludovica Primitivo ◽  
Martina De Angelis ◽  
...  

Fluorescent atomically precise Ag38(11-azido-2-ol-undecane-thiolate)24 nanoclusters are easily prepared using sodium ascorbate as a “green” reducer and are extensively characterized by way of elemental analyses, ATR-FTIR, XRD, SAXS, UV-vis, fluorescence spectroscopies,...


2019 ◽  
Vol 17 ◽  
pp. 1507-1513
Author(s):  
Sarawut Jaiyen ◽  
Janthanee Authisin ◽  
Chanoknan Banglieng

Sign in / Sign up

Export Citation Format

Share Document