Structure effect of water-soluble iron porphyrins on catalyzing protein tyrosine nitration in the presence of nitrite and hydrogen peroxide

Nitric Oxide ◽  
2019 ◽  
Vol 91 ◽  
pp. 42-51 ◽  
Author(s):  
Jiayu Li ◽  
Zhen Yang ◽  
Hailing Li ◽  
Zhonghong Gao
Planta Medica ◽  
2006 ◽  
Vol 73 (01) ◽  
pp. 20-26 ◽  
Author(s):  
Ana Olmos ◽  
Salvador Máñez ◽  
Rosa Giner ◽  
M. Recio ◽  
José Ríos

2017 ◽  
Vol 5 (1) ◽  
pp. 61
Author(s):  
Weon-Bae Ko ◽  
Hong-Seok Jeong ◽  
Sung-Ho Hwang

<p>The water-soluble fullerenes [C<sub>60</sub>, C<sub>70</sub>] are prepared with fullerenes [C<sub>60</sub>, C<sub>70</sub>] and a mixture of oxidants (v/v) at the ratio of 3:1 under ultrasonic condition at room temperature. The MALDI-TOF MS confirmed that the water-soluble compounds were C<sub>60</sub> and C<sub>70</sub>. The antioxidant effect of water-soluble fullerenes [C<sub>60</sub>, C<sub>70</sub>] in the PC 12 cells (Rat pheochromocytoma) line following exposure to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) was investigated.</p>


2001 ◽  
Vol 281 (6) ◽  
pp. H2289-H2294 ◽  
Author(s):  
Illarion V. Turko ◽  
Sisi Marcondes ◽  
Ferid Murad

High levels of reactive species of nitrogen and oxygen in diabetes may cause modifications of proteins. Recently, an increase in protein tyrosine nitration was found in several diabetic tissues. To understand whether protein tyrosine nitration is the cause or the result of the associated diabetic complications, it is essential to identify specific proteins vulnerable to nitration with in vivo models of diabetes. In the present study, we have demonstrated that succinyl-CoA:3-oxoacid CoA-transferase (SCOT; EC 2.8.3.5 ) is susceptible to tyrosine nitration in hearts from streptozotocin-treated rats. After 4 and 8 wk of streptozotocin administration and diabetes progression, SCOT from rat hearts had a 24% and 39% decrease in catalytic activity, respectively. The decrease in SCOT catalytic activity is accompanied by an accumulation of nitrotyrosine in SCOT protein. SCOT is a mitochondrial matrix protein responsible for ketone body utilization. Ketone bodies provide an alternative source of energy during periods of glucose deficiency. Because diabetes results in profound derangements in myocardial substrate utilization, we suggest that SCOT tyrosine nitration is a contributing factor to this impairment in the diabetic heart.


Sign in / Sign up

Export Citation Format

Share Document