P1.1 Deletion of exon 26 of the dystrophin gene is associated with a mild Becker muscular dystrophy phenotype

2011 ◽  
Vol 21 (9-10) ◽  
pp. 641-642
Author(s):  
N.W. Witting ◽  
M.D. Dunoe ◽  
J.V. Vissing
2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Alex Gyftopoulos ◽  
Tamara Ashvetiya ◽  
Yi-Ju Chen ◽  
Libin Wang ◽  
Charles H Williams ◽  
...  

Nonischemic dilated cardiomyopathy (DCM) often has a genetic etiology, however, its prevalence and etiologies are not completely understood. The UK Biobank comprises clinical and genetic data for greater than 500,000 individuals with enrollees 40-69 years of age. Our group created a custom phenotype of heart failure using ICD-10 codes for several subtypes of heart failure diagnoses including DCM. We then compared the individuals included in the custom heart failure phenotype to control individuals in a 20-to-1 fashion to identify genetic differences. Data were compared using Mixed Model Analysis for Pedigrees/Populations (MMAP) mixed-model regression. We identified 8 unlinked intronic variants in the dystrophin gene ( DMD ) that, when separated by self-identified race, occurred with a combined minor allele frequency of 0.15 in individuals with heart failure who identified as being of African descent. The combined minor allele frequency of these variants was 0.05 in individuals who self-identified as being of European descent. One variant of DMD in particular (rs139029250), was identified with a minor allele frequency of 0.05 in African British with DCM. The unadjusted odds ratio of a diagnosis of heart failure in individuals with rs129029250 was 4.65. When separated by gender, the unadjusted odds ratios are 2.02 for females and 6.44 for males. DMD is most notably known for its role in Duchenne and Becker muscular dystrophy, both of which are known to cause dilated cardiomyopathy in affected individuals. However, none of the individuals (36 female and 43 male) identified in our analysis with rs129029250 have been diagnosed with Duchenne muscular dystrophy, Becker muscular dystrophy, or a primary disorder of muscle (ICD code G70). Additionally, these individuals have an intronic variant of DMD , while Duchene and Becker muscular dystrophy are both due to exonic mutations. These findings suggest a possible common variant in the DMD gene that may contribute to DCM in individuals of African descent.


1997 ◽  
Vol 99 (2) ◽  
pp. 206-208 ◽  
Author(s):  
Vinita Singh ◽  
Shirish Sinha ◽  
Sudhish Mishra ◽  
Lakshmi Shankar Chaturvedi ◽  
Sunil Pradhan ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 765 ◽  
Author(s):  
Kenji Rowel Q. Lim ◽  
Narin Sheri ◽  
Quynh Nguyen ◽  
Toshifumi Yokota

Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive condition caused primarily by out-of-frame mutations in the dystrophin gene. In males, DMD presents with progressive body-wide muscle deterioration, culminating in death as a result of cardiac or respiratory failure. A milder form of DMD exists, called Becker muscular dystrophy (BMD), which is typically caused by in-frame dystrophin gene mutations. It should be emphasized that DMD and BMD are not exclusive to males, as some female dystrophin mutation carriers do present with similar symptoms, generally at reduced levels of severity. Cardiac involvement in particular is a pressing concern among manifesting females, as it may develop into serious heart failure or could predispose them to certain risks during pregnancy or daily life activities. It is known that about 8% of carriers present with dilated cardiomyopathy, though it may vary from 0% to 16.7%, depending on if the carrier is classified as having DMD or BMD. Understanding the genetic and molecular mechanisms underlying cardiac manifestations in dystrophin-deficient females is therefore of critical importance. In this article, we review available information from the literature on this subject, as well as discuss the implications of female carrier studies on the development of therapies aiming to increase dystrophin levels in the heart.


2007 ◽  
Vol 65 (1) ◽  
pp. 73-76 ◽  
Author(s):  
Aline Andrade Freund ◽  
Rosana Herminia Scola ◽  
Raquel Cristina Arndt ◽  
Paulo José Lorenzoni ◽  
Claudia Kamoy Kay ◽  
...  

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by mutations in the dystrophin gene. We studied 106 patients with a diagnosis of probable DMD/BMD by analyzing 20 exons of the dystrophin gene in their blood and, in some of the cases, by immunohistochemical assays for dystrophin in muscle biopsies. In 71.7% of the patients, deletions were found in at least one of the exons; 68% of these deletions were in the hot-spot 3' region. Deletions were found in 81.5% of the DMD cases and in all the BMD cases. The cases without deletions, which included the only woman in the study with DMD, had dystrophin deficiency. The symptomatic female carriers had no deletions but had abnormal dystrophin distribution in the sarcolemma (discontinuous immunostains). The following diagnoses were made for the remaining cases without deletions with the aid of a muscle biopsy: spinal muscular atrophy, congenital myopathy; sarcoglycan deficiency and unclassified limb-girdle muscular dystrophy. Dystrophin analysis by immunohistochemistry continues to be the most specific method for diagnosis of DMD/BMD and should be used when no exon deletions are found in the dystrophin gene in the blood.


2010 ◽  
Vol 55 (6) ◽  
pp. 379-388 ◽  
Author(s):  
Yasuhiro Takeshima ◽  
Mariko Yagi ◽  
Yo Okizuka ◽  
Hiroyuki Awano ◽  
Zhujun Zhang ◽  
...  

2008 ◽  
Vol 18 (9-10) ◽  
pp. 777-778
Author(s):  
F. Magri ◽  
R. Del Bo ◽  
F. Fortunato ◽  
S. Ghezzi ◽  
R. Cagliani ◽  
...  

1993 ◽  
Vol 38 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Keiko Hiyama ◽  
Mieko Kodaira ◽  
Chiyoko Satoh ◽  
Takenori Karakawa ◽  
Hitoshi Kameo ◽  
...  

1997 ◽  
Vol 4 (2) ◽  
pp. 138-142 ◽  
Author(s):  
J. G. Zimowski ◽  
M. U. Bisko ◽  
E. J. Fidziańska ◽  
A. Z. Fidziańska ◽  
B. Badurska ◽  
...  

2021 ◽  
Vol 43 (3) ◽  
pp. 1267-1281
Author(s):  
Kentaro Ito ◽  
Hideo Takakusa ◽  
Masayo Kakuta ◽  
Akira Kanda ◽  
Nana Takagi ◽  
...  

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by out-of-frame or nonsense mutation in the dystrophin gene. It begins with a loss of ambulation between 9 and 14 years of age, followed by various other symptoms including cardiac dysfunction. Exon skipping of patients’ DMD pre-mRNA induced by antisense oligonucleotides (AOs) is expected to produce shorter but partly functional dystrophin proteins, such as those possessed by patients with the less severe Becker muscular dystrophy. We are working on developing modified nucleotides, such as 2′-O,4′-C-ethylene-bridged nucleic acids (ENAs), possessing high nuclease resistance and high affinity for complementary RNA strands. Here, we demonstrate the preclinical characteristics (exon-skipping activity in vivo, stability in blood, pharmacokinetics, and tissue distribution) of renadirsen, a novel AO modified with 2′-O-methyl RNA/ENA chimera phosphorothioate designed for dystrophin exon 45 skipping and currently under clinical trials. Notably, systemic delivery of renadirsen sodium promoted dystrophin exon skipping in cardiac muscle, skeletal muscle, and diaphragm, compared with AOs with the same sequence as renadirsen but conventionally modified by PMO and 2′OMePS. These findings suggest the promise of renadirsen sodium as a therapeutic agent that improves not only skeletal muscle symptoms but also other symptoms in DMD patients, such as cardiac dysfunction.


Sign in / Sign up

Export Citation Format

Share Document