Simplified modeling of a PWR reactor pressure vessel lower head failure in the case of a severe accident

2005 ◽  
Vol 235 (8) ◽  
pp. 835-843 ◽  
Author(s):  
V. Koundy ◽  
M. Durin ◽  
L. Nicolas ◽  
A. Combescure
Author(s):  
V. Koundy ◽  
M. Durin ◽  
L. Nicolas ◽  
A. Combescure

In order to characterize the timing, mode and size of a possible lower head failure (LHF) of the reactor pressure vessel (RPV) in the event of a core meltdown accident, several large-scale LHF experiments were performed under the USNRC/SNL LHF program. The experiments examined lower head failure at high pressures (10 MPa in most cases) and with small throughwall temperature differentials. Another recent USNRC/SNL LHF program, called the OLHF program, has been undertaken in the framework of an OECD project. This was an extension of the first program and dealt with low and moderate pressures (2 MPa to 5 MPa) but with large throughwall temperature differentials. These experiments should lead to a better understanding of the mechanical behavior of the reactor vessel lower head, which is of importance both in severe accident assessment and the definition of accident mitigation strategies. A well-characterized failure of the lower head is of prime importance for the evaluation of the quantity of core material that can escape into the containment, since this defines the initial conditions for all external-vessel events. The large quantity of escaping corium may lead to direct heating of the containment. This is an important severe accident issue because of its potential to cause early containment failure. The experiments also provide data for model development and validation. For our part, as one of the program partners, numerical modeling was performed to simulate these experiments. This paper presents a detailed description of three of our numerical models used for the simulation. The first model is a simplified semi-analytical approach based on the theory of a spherical shell subjected to internal pressure. The two other methods deal with 2D finite element (2D-FE) modeling: one combines the Norton-Bailey creep law with a damage model proposed by Lemaitre-Chaboche while the other uses only a creep failure criterion but takes into account thermo-metallurgical phase transformations. The numerical results are consistent with the experimental measurements. The effect on the numerical results of the multiphase transformation of the shell material and of the two failure criteria used, one involving necking (Conside`re’s criterion) and the other involving creep damage (Lemaitre-Chaboche), is discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Mindaugas Valinčius ◽  
Tadas Kaliatka ◽  
Algirdas Kaliatka ◽  
Eugenijus Ušpuras

One of the severe accident management strategies for nuclear reactors is the melted corium retention inside the reactor pressure vessel. The work presented in this article investigates the application of in-vessel retention (IVR) severe accident management strategy in a BWR reactor. The investigations were performed assuming a scenario with the large break LOCA without injection of cooling water. A computer code RELAP/SCDAPSIM MOD 3.4 was used for the numerical simulation of the accident. Using a model of the entire reactor, a full accident sequence from the large break to core uncover and heat-up as well as corium relocation to the lower head is presented. The ex-vessel cooling was modelled in order to evaluate the applicability of RELAP/SCDAPSIM code for predicting the heat fluxes and reactor pressure vessel wall temperatures. The results of different ex-vessel heat transfer modes were compared and it was concluded that the implemented heat transfer correlations of COUPLE module in RELAP/SCDAPSIM should be applied for IVR analysis. To investigate the influence of debris separation into oxidic and metallic layers in the molten pool on the heat transfer through the wall of the lower head the analytical study was conducted. The results of this study showed that the focusing effect is significant and under some extreme conditions local heat flux from reactor vessel could exceed the critical heat flux. It was recommended that the existing RELAP/SCDAPSIM models of the processes in the debris should be updated in order to consider more complex phenomena and at least oxide and metal phase separation, allowing evaluating local distribution of the heat fluxes.


2008 ◽  
Vol 238 (9) ◽  
pp. 2411-2419 ◽  
Author(s):  
Vincent Koundy ◽  
Cataldo Caroli ◽  
Laetitia Nicolas ◽  
Philippe Matheron ◽  
Jean-Marie Gentzbittel ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Alejandro Nuñez-Carrera ◽  
Raúl Camargo-Camargo ◽  
Gilberto Espinosa-Paredes ◽  
Adrián López-García

The objective of this paper is the simulation and analysis of the BoilingWater Reactor (BWR) lower head during a severe accident. The COUPLE computer code was used in this work to model the heatup of the reactor core material that slumps in the lower head of the reactor pressure vessel. The prediction of the lower head failure is an important issue in the severe accidents field, due to the accident progression and the radiological consequences that are completely different with or without the failure of the Reactor Pressure Vessel (RPV). The release of molten material to the primary containment and the possibility of steam explosion may produce the failure of the primary containment with high radiological consequences. Then, it is important to have a detailed model in order to predict the behavior of the reactor vessel lower head in a severe accident. In this paper, a hypothetical simulation of a Loss of Coolant Accident (LOCA) with simultaneous loss of off-site power and without injection of cooling water is presented with the proposal to evaluate the temperature distribution and heatup of the lower part of the RPV. The SCDAPSIM/RELAP5 3.2 code was used to build the BWR model and conduct the numerical simulation.


Author(s):  
Kun Zhang ◽  
Xuewu Cao

The postulated total station blackout accident (SBO) of PWR NPP with 600 MWe in China is analyzed as the base case using SCDAP/RELAP5 code. Then the hot leg or surge line are assumed to rupture before the lower head of Reactor Pressure Vessel (RPV) ruptures, and the progressions are analyzed in detail comparing with the base case. The results show that the accidental rupture of hot leg or surge line will greatly influence the progression of accident. The probability of hot leg or surge line rupture in intentional depressurization is also studied in this paper, which provides a suggestion to the development of Severe Accident Management Guidelines (SAMG).


2020 ◽  
pp. 30-40
Author(s):  
O. Kotsuba ◽  
Yu. Vorobyov ◽  
O. Zhabin ◽  
D. Gumenyuk

An overview of the main improvements in updated version 2.1 of MELCOR computer code related to more representative mathematical modeling of complex thermohydraulic severe accident processes of core degradation, transfer of molten fragments to the bottom of the reactor, heating and failure of the bottom of the reactor pressure vessel is presented. The elements of WWER-1000 NPP computer model for the MELCOR 1.8.5 (control volumes, thermal structures and structures of the reactor core) that are reproduced for a reactor with the primary side, the secondary side and the containment are described. The changes implemented in WWER-1000 NPP model for MELCOR 1.8.5 to convert it to MELCOR 2.1 version that are mainly related to more detailed modeling of the reactor core and reactor pressure vessel bottom are provided. The paper presents the results of comparative analysis of severe accident scenario of total station blackout at WWER-1000 NPP with MELCOR 1.8.5 and 2.1. The comparison demonstrates good agreement between the main parameters’ results (pressure and temperature in hydraulic elements of the primary, secondary sides and the containment, temperature of core elements, the mass of the generated non-condensed gases and their concentration in the containment) obtained with these code versions for severe accident in-vessel phase. The identified differences in the time of core structures degradation and reactor vessel bottom failure are insignificantly affected by the behavior of the parameters in the primary side and the containment in the in-vessel phase of the severe accident and are related to more detailed modelling of the reactor core and bottom part of the reactor in MELCOR 2.1.


Kerntechnik ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. 454-469
Author(s):  
S. H. Abdel-Latif

Abstract The station black-out (SBO) is one of the main accident sequences to be considered in the field of severe accident research. To evaluate a nuclear power plant’s behavior in the context of this accident, the integral ASTEC-V2.1.1.3 code “Accident Source Term Evaluation Code” covers sequences of SBO accidents that may lead to a severe accident. The aim of this work is to discuss the modelling principles for the core melting and in-vessel melt relocation phenomena of the VVER-1000 reactor. The scenario of SBO is simulated by ASTEC code using its basic modules. Then, the simulation is performed again by the same code after adding and activating the modules; ISODOP, DOSE, CORIUM, and RCSMESH to simulate the ex-vessel melt. The results of the two simulations are compared. As a result of SBO, the active safety systems are not available and have not been able to perform their safety functions that maintain the safety requirements to ensure a secure operation of the nuclear power plant. As a result, the safety requirements will be violated causing the core to heat-up. Moreover potential core degradation will occur. The present study focuses on the reactor pressure vessel failure and relocation of corium into the containment. It also discusses the transfer of Fission Products (FPs) from the reactor to the containment, the time for core heat-up, hydrogen production and the amount of corium at the lower plenum reactor pressure vessel is determined.


Kerntechnik ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. 194-201
Author(s):  
L. Wu ◽  
H. Miao ◽  
P. Yu ◽  
Z. Huang ◽  
J. Zheng ◽  
...  

Abstract Preventing the leakage of radioactive materials is important to nuclear safety. During a station blackout accident in pressurized water reactors, the hot leg creep rupture caused by hot leg countercurrent flow occurs before the reactor pressure vessel failure that caused by lower head rupture. The secondary fission products barrier is lost after hot leg creep rupture. An analysis for this phenomenon was done using the Modular Accident Analysis Program version 4.0.4 code. A station blackout accident for CPR1000 is simulated and the occurrence and influence of hot leg creep rupture phenomenon are analyzed in detail. After that, a sensitivity analysis of the opening of different pressurizer pilot-operated relief valves at five minutes after entering severe accident management guideline (before the hot leg creep rupture occurs) is studied. The results show that reactor pressure vessel failure time can be extended by at least 4 h if at least one pilot-operated relief valve is opened and direct containment heating phenomenon can be eliminated if at least two pilot-operated relief valves are opened.


Sign in / Sign up

Export Citation Format

Share Document