Scientific design of a large-scale sodium thermal–hydraulic test facility for KALIMER—Part I: Scientific facility design

2013 ◽  
Vol 265 ◽  
pp. 497-513 ◽  
Author(s):  
Soon-Joon Hong ◽  
Doo-Yong Lee ◽  
Jae-Hyuk Eoh ◽  
Tae-Ho Lee ◽  
Yong-Bum Lee
2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yeong-il Kim ◽  
Yong Bum Lee ◽  
Chan Bock Lee ◽  
Jinwook Chang ◽  
Chiwoong Choi

Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR) design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Ki-Yong Choi ◽  
Yeon-Sik Kim ◽  
Chul-Hwa Song ◽  
Won-Pil Baek

A large-scale thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been operated by KAERI. The reference plant of ATLAS is the APR1400 (Advanced Power Reactor, 1400 MWe). Since 2007, an extensive series of experimental works were successfully carried out, including large break loss of coolant accident tests, small break loss of coolant accident tests at various break locations, steam generator tube rupture tests, feed line break tests, and steam line break tests. These tests contributed toward an understanding of the unique thermal-hydraulic behavior, resolving the safety-related concerns and providing validation data for evaluation of the safety analysis codes and methodology for the advanced pressurized water reactor, APR1400. Major discoveries and lessons found in the past integral effect tests are summarized in this paper. As the demand for integral effect tests is on the rise due to the active national nuclear R&D program in Korea, the future prospects of the application of the ATLAS facility are also discussed.


Author(s):  
Mitsuhiro Suzuki ◽  
Takeshi Takeda ◽  
Hideo Nakamura

Presented are experiment results of the Large Scale Test Facility (LSTF) conducted at the Japan Atomic Energy Agency (JAEA) with a focus on core exit thermocouple (CET) performance to detect core overheat during a vessel top break loss-of-coolant accident (LOCA) simulation experiment. The CET temperatures are used to start accident management (AM) action to quickly depressurize steam generator (SG) secondary sides in case of core temperature excursion. Test 6-1 is the first test of the OECD/NEA ROSA Project started in 2005, simulating withdraw of a control rod drive mechanism penetration nozzle at the vessel top head. The break size is equivalent to 1.9% cold leg break. The AM action was initiated when CET temperature rose up to 623K. There was no reflux water fallback onto the CETs during the core heat-up period. The core overheat, however, was detected with a time delay of about 230s. In addition, a large temperature discrepancy was observed between the CETs and the hottest core region. This paper clarifies the reasons of time delay and temperature discrepancy between the CETs and heated core during boil-off including three-dimensional steam flows in the core and core exit. The paper discusses applicability of the LSTF CET performance to pressurized water reactor (PWR) conditions and a possibility of alternative indicators for earlier AM action than in Test 6-1 is studied by using symptom-based plant parameters such as a reactor vessel water level detection.


Sign in / Sign up

Export Citation Format

Share Document