Analysis of the natural circulation flow map uncertainties in an integral small modular reactor

2021 ◽  
Vol 378 ◽  
pp. 111156
Author(s):  
Seyed Ali Hosseini ◽  
Reza Akbari ◽  
Amir Saeed Shirani ◽  
Francesco D'Auria
2021 ◽  
Author(s):  
Takeaki Ube ◽  
Tetsuaki Takeda

Abstract A depressurization accident involving the rupture of the primary cooling pipe of the Gas Turbine High Temperature Reactor 300 cogeneration (GTHTR300C), which is a very-high-temperature reactor, is a design-based accident. When the primary pipe connected horizontally to the side of the reactor pressure vessel of GTHTR300C ruptures, molecular diffusion and local natural convection facilitate gas mixing, in addition to air ingress by counter flow. Furthermore, it is expected that a natural circulation flow around the furnace will suddenly occur. To improve the safety of GTHTR300C, an experiment was conducted using an experimental apparatus simulating the flow path configuration of GTHTR300C to investigate the mixing process of a two-component gas of helium and air. The experimental apparatus consisted of a coaxial double cylinder and a coaxial horizontal double pipe. Ball valves were connected to a horizontal inner pipe and outer pipe, and the valves were opened to simulate damage to the main pipe. As a result, it was confirmed that a stable air and helium density stratification formed in the experimental apparatus, and then a natural circulation flow was generated around the inside of the reactor.


2018 ◽  
Author(s):  
Mulya Juarsa ◽  
Anhar R. Antariksawan ◽  
Surip Widodo ◽  
M. Hadi Kusuma ◽  
Agus Nur Rohman ◽  
...  

Author(s):  
Naoto Yanagawa ◽  
Masashi Nomura ◽  
Tetsuaki Takeda ◽  
Shumpei Funatani

This study is to investigate a control method of the natural circulation of the air by the injection of helium gas. A depressurization is the one of the design-basis accidents of a Very High Temperature Reactor (VHTR). When the primary pipe rupture accident occurs in the VHTR, the air is predicted to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Finally, it seems to be probable that the natural circulation flow of the air in the reactor pressure vessel produce continuously. In order to predict or analyze the air ingress phenomenon during the depressurization accident of the VHTR, it is important to develop the method for prevention of air ingress during the accident. In this study, the air ingress process is discussed by comparing the experimental and analytical results of the reverse U-shaped channel which has parallel channels. The experiment of the natural circulation using a circular tube consisted of the reverse U-shaped type has been carried out. The vertical channel is consisted of the one side heated and the other side cooled pipe. The experimental apparatus is filled with the air and one side vertical tube is heated. A very small amount of helium gas is injected from the top of the channel. The velocity and the mole fraction of each gas are also calculated by using heat and mass transfer numerical analysis of multi-component gas. The result shows that the numerical analysis is considered to be well simulated the experiment. The natural circulation of the air has very weak velocity after the injection of helium gas. About 780 seconds later, the natural circulation suddenly produces. The natural circulation flow of the air can be controlled by the method of helium gas injection. The mechanism of the phenomenon is found that mole fraction is changed by the molecular diffusion and the very weak circulation.


Author(s):  
Jaehyun Cho ◽  
Yong-Hoon Shin ◽  
Il Soon Hwang

Although the current Pressurized Water Reactors (PWRs) have significantly contributed to the global energy supply, PWRs have not been considered as a trustworthy energy solution owing to its several problems; spent nuclear fuels (SNFs), nuclear safety, and nuclear economy. In order to overcome these problems, lead-bismuth eutectic (LBE) fully passive cooling Small Modular Reactor (SMR) system is suggested. It is possible to not only provide the solution of the problem of SNFs through the transmutation feature of LBE coolant, but also increase the safety and economy through the concepts of the natural circulation cooling SMRs. It is necessary to maximize the advantages (safety and economy) of this type of Nuclear Power Plants for several applications in future. Accordingly, objective of the study is to maximize the reactor core power while the limitations of shipping size, materials endurance, long-burning criticality as well as safety under Beyond Design Basis Events must be satisfied. Design limitations of natural circulating LBE-cooling SMRs are researched and power maximization method is developed based on obtained design limitations. It is expected that the results are contributed to reactor design stage with providing several insights to designers as well as the methods for design optimization of other type of SMRs.


Sign in / Sign up

Export Citation Format

Share Document