Superheavy element isotopes, decay properties

2004 ◽  
Vol 734 ◽  
pp. 188-191 ◽  
Author(s):  
Ken Moody
2003 ◽  
Vol 12 (05) ◽  
pp. 661-668 ◽  
Author(s):  
A. MARINOV ◽  
S. GELBERG ◽  
D. KOLB ◽  
R. BRANDT ◽  
A. PAPE

Recently, long-lived high spin super- and hyperdeformed isomeric states with unusual radioactive decay properties have been discovered. Based on these newly observed modes of radioactive decay, consistent interpretations are suggested for previously unexplained phenomena seen in nature. These are the Po halos, the low-energy enhanced 4.5 MeV α-particle group proposed to be due to an isotope of a superheavy element with Z=108, and the giant halos.


2007 ◽  
Vol 16 (04) ◽  
pp. 949-956 ◽  
Author(s):  
YURI OGANESSIAN

The formation and decay properties of the heaviest nuclei with Z = 112 - 116 and 118 were studied in the reactions 238 U , 242,244 Pu , 243 Am , 245,248 Cm and 249 Cf +48 Ca . The new nuclides mainly undergo sequential α-decay, which ends with spontaneous fission. The total time of decays ranges from 0.5 ms to about 1 day, depending on the proton and neutron numbers in the synthesized nuclei. The atomic number of the new elements 115 and 113 was confirmed also by an independent radiochemical experiment based on the identification of the neutron-rich isotope 268 Db (TSF ≈ 30 h ), the final product in the chain of α-decays of the odd–odd parent nucleus 288115. The comparison of the decay properties of 29 new nuclides with Z = 104 - 118 and N = 162 - 177 gives evidence for the decisive influence of the structure of superheavy nuclei on their stability with respect to different modes of radioactive decay. The investigations connected with the search for superheavy elements in Nature (cosmic rays) and prospects of superheavy element research are also presented.


2016 ◽  
Vol 25 (09) ◽  
pp. 1650074 ◽  
Author(s):  
H. C. Manjunatha

We have studied the [Formula: see text]-decay properties of superheavy nuclei (SHN) [Formula: see text] in the range [Formula: see text] using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated [Formula: see text] half-lives agree with the values computed using the Viola–Seaborg systematic, the universal curve of Poenaru et al. [Phys. Rev. C 83 (2011) 014601; 85 (2012) 034615] and the analytical formulas of Royer [J. Phys. G[Formula: see text] Nucl. Part. Phys. 26 (2000) 1149]. To identify the mode of decay of these isotopes, the spontaneous-fission half-lives were also evaluated using the semiempirical relation given by Xu et al. [Phys. Rev. C 78 (2008) 044329]. The calculated half-lives help to predict the possible isotopes of this superheavy element [Formula: see text]. As we could observe [Formula: see text] chain consistently from the nuclei [Formula: see text]124, we have predicted that these nuclei could not be synthesized and detected experimentally via [Formula: see text] decay as their decay half-lives are too small. The nuclei [Formula: see text]124 were found to have long half-lives and hence could be sufficient to detect them if synthesized in a laboratory.


2020 ◽  
Vol 30 (10) ◽  
pp. 5544-5559 ◽  
Author(s):  
Jonathan D Power ◽  
Charles J Lynch ◽  
Babatunde Adeyemo ◽  
Steven E Petersen

Abstract This article advances two parallel lines of argument about resting-state functional magnetic resonance imaging (fMRI) signals, one empirical and one conceptual. The empirical line creates a four-part organization of the text: (1) head motion and respiration commonly cause distinct, major, unwanted influences (artifacts) in fMRI signals; (2) head motion and respiratory changes are, confoundingly, both related to psychological and clinical and biological variables of interest; (3) many fMRI denoising strategies fail to identify and remove one or the other kind of artifact; and (4) unremoved artifact, due to correlations of artifacts with variables of interest, renders studies susceptible to identifying variance of noninterest as variance of interest. Arising from these empirical observations is a conceptual argument: that an event-related approach to task-free scans, targeting common behaviors during scanning, enables fundamental distinctions among the kinds of signals present in the data, information which is vital to understanding the effects of denoising procedures. This event-related perspective permits statements like “Event X is associated with signals A, B, and C, each with particular spatial, temporal, and signal decay properties”. Denoising approaches can then be tailored, via performance in known events, to permit or suppress certain kinds of signals based on their desirability.


Author(s):  
SANJIV KUMAR GUPTA ◽  
KATHRYN E. HARE

Abstract Let $G/K$ be an irreducible symmetric space, where G is a noncompact, connected Lie group and K is a compact, connected subgroup. We use decay properties of the spherical functions to show that the convolution product of any $r=r(G/K)$ continuous orbital measures has its density function in $L^{2}(G)$ and hence is an absolutely continuous measure with respect to the Haar measure. The number r is approximately the rank of $G/K$ . For the special case of the orbital measures, $\nu _{a_{i}}$ , supported on the double cosets $Ka_{i}K$ , where $a_{i}$ belongs to the dense set of regular elements, we prove the sharp result that $\nu _{a_{1}}\ast \nu _{a_{2}}\in L^{2},$ except for the symmetric space of Cartan class $AI$ when the convolution of three orbital measures is needed (even though $\nu _{a_{1}}\ast \nu _{a_{2}}$ is absolutely continuous).


1984 ◽  
Vol 12 (1) ◽  
pp. 105-116 ◽  
Author(s):  
A. Corma ◽  
V. Fornés ◽  
J.B. Monton ◽  
A.V. Orchilles
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document