scholarly journals Note on stability of new hyperbolic AdS black holes and phase transitions in Rényi entropies

2017 ◽  
Vol 923 ◽  
pp. 1-31 ◽  
Author(s):  
Danning Li ◽  
Song He ◽  
Zhen Fang
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jie Ren

Abstract We analytically study phase transitions of holographic charged Rényi entropies in two gravitational systems dual to the $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory at finite density and zero temperature. The first system is the Reissner-Nordström-AdS5 black hole, which has finite entropy at zero temperature. The second system is a charged dilatonic black hole in AdS5, which has zero entropy at zero temperature. Hyperbolic black holes are employed to calculate the Rényi entropies with the entangling surface being a sphere. We perturb each system by a charged scalar field, and look for a zero mode signaling the instability of the extremal hyperbolic black hole. Zero modes as well as the leading order of the full retarded Green’s function are analytically solved for both systems, in contrast to previous studies in which only the IR (near horizon) instability was analytically treated.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
De-Cheng Zou ◽  
Ming Zhang ◽  
Chao Wu ◽  
Rui-Hong Yue

We construct analytical charged anti-de Sitter (AdS) black holes surrounded by perfect fluids in four dimensional Rastall gravity. Then, we discuss the thermodynamics and phase transitions of charged AdS black holes immersed in regular matter like dust and radiation, or exotic matter like quintessence, ΛCDM type, and phantom fields. Surrounded by phantom field, the charged AdS black hole demonstrates a new phenomenon of reentrant phase transition (RPT) when the parameters Q, Np, and ψ satisfy some certain condition, along with the usual small/large black hole (SBH/LBH) phase transition for the surrounding dust, radiation, quintessence, and cosmological constant fields.


2017 ◽  
Vol 26 (03) ◽  
pp. 1750017 ◽  
Author(s):  
Zeinab Sherkatghanad ◽  
Behrouz Mirza ◽  
Zahra Mirzaiyan ◽  
Seyed Ali Hosseini Mansoori

We consider the critical behaviors and phase transitions of Gauss–Bonnet–Born–Infeld-AdS black holes (GB–BI-AdS) for [Formula: see text] and the extended phase space. We assume the cosmological constant, [Formula: see text], the coupling coefficient [Formula: see text], and the BI parameter [Formula: see text] to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find “reentrant and triple point phase transitions” (RPT-TP) and “multiple reentrant phase transitions” (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient [Formula: see text] in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB–BI-AdS black holes in the grand canonical ensemble and for [Formula: see text]. These calculations are then expanded to the critical behavior of Born–Infeld-AdS (BI-AdS) black holes in the third-order of Lovelock gravity and in the grand canonical ensemble to find a van der Waals (vdW) behavior for [Formula: see text] and a RPT for [Formula: see text] for specific values of potential [Formula: see text] in the grand canonical ensemble. Furthermore, we obtain a similar behavior for the limit of [Formula: see text], i.e. charged-AdS black holes in the third-order of the Lovelock gravity. Thus, it is shown that the critical behaviors of these black holes are independent of the parameter [Formula: see text] in the grand canonical ensemble.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ming Zhang ◽  
De-Cheng Zou ◽  
Rui-Hong Yue

Motivated by recent developments of black hole thermodynamics in de Rham, Gabadadze, and Tolley (dRGT) massive gravity, we study the critical behaviors of topological Anti-de Sitter (AdS) black holes in the presence of Born-Infeld nonlinear electrodynamics. Here the cosmological constant appears as a dynamical pressure of the system and its corresponding conjugate quantity is interpreted as thermodynamic volume. This shows that, besides the Van der Waals-like SBH/LBH phase transitions, the so-called reentrant phase transition (RPT) appears in four-dimensional space-time when the coupling coefficients cim2 of massive potential and Born-Infeld parameter b satisfy some certain conditions. In addition, we also find the triple critical points and the small/intermediate/large black hole phase transitions for d=5.


Sign in / Sign up

Export Citation Format

Share Document