scholarly journals Dirac neutrino mass models with a modular S4 symmetry

2021 ◽  
Vol 962 ◽  
pp. 115247 ◽  
Author(s):  
Xin Wang
2019 ◽  
Vol 99 (7) ◽  
Author(s):  
Julian Calle ◽  
Diego Restrepo ◽  
Carlos E. Yaguna ◽  
Óscar Zapata

2018 ◽  
Vol 96 (1) ◽  
pp. 71-80
Author(s):  
M. Bora ◽  
S. Roy ◽  
N. Nimai Singh

In the context of neutrino oscillation experiments, six different quasi-degenerate neutrino (QDN) mass models, which we parameterized recently, are found equally relevant. The present attempt tries to explore the possibilities for the discrimination of the six QDN models in the light of baryogenesis via leptogenesis. In this work we investigate all six models to predict observable baryon asymmetry. If leptogenesis is unflavoured or single flavoured, a significant difference is found. Then, only QD-NH-IA and QD-IH-IA are dominant. To get specific results, the choice of Dirac neutrino mass matrix as down-quark type is found most favourable.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Maria Mehmood ◽  
Mansoor Ur Rehman ◽  
Qaisar Shafi

Abstract We explore proton decay in a class of realistic supersymmetric flipped SU(5) models supplemented by a U(1)R symmetry which plays an essential role in implementing hybrid inflation. Two distinct neutrino mass models, based on inverse seesaw and type I seesaw, are identified, with the latter arising from the breaking of U(1)R by nonrenormalizable superpotential terms. Depending on the neutrino mass model an appropriate set of intermediate scale color triplets from the Higgs superfields play a key role in proton decay channels that include p → (e+, μ+) π0, p → (e+, μ+) K0, p →$$ \overline{v}{\pi}^{+} $$ v ¯ π + , and p →$$ \overline{v}{K}^{+} $$ v ¯ K + . We identify regions of the parameter space that yield proton lifetime estimates which are testable at Hyper-Kamiokande and other next generation experiments. We discuss how gauge coupling unification in the presence of intermediate scale particles is realized, and a Z4 symmetry is utilized to show how such intermediate scales can arise in flipped SU(5). Finally, we compare our predictions for proton decay with previous work based on SU(5) and flipped SU(5).


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Miguel Escudero ◽  
Jacobo Lopez-Pavon ◽  
Nuria Rius ◽  
Stefan Sandner

Abstract At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model (ΛCDM), the Planck collaboration reports ∑mv< 0.12 eV at 95 % CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe τν ≲ tU, represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state ν4 and a Goldstone boson ϕ, in which νi→ ν4ϕ decays can loosen the neutrino mass bounds up to ∑mv ∼ 1 eV, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a U(1)μ−τ flavor symmetry, which are otherwise in tension with the current bound on ∑mv.


1992 ◽  
Vol 45 (10) ◽  
pp. R3312-R3315 ◽  
Author(s):  
K. S. Babu ◽  
Rabindra N. Mohapatra ◽  
I. Z. Rothstein

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
John Gargalionis ◽  
Raymond R. Volkas

Abstract Building UV completions of lepton-number-violating effective operators has proved to be a useful way of studying and classifying models of Majorana neutrino mass. In this paper we describe and implement an algorithm that systematises this model-building procedure. We use the algorithm to generate computational representations of all of the tree-level completions of the operators up to and including mass-dimension 11. Almost all of these correspond to models of radiative neutrino mass. Our work includes operators involving derivatives, updated estimates for the bounds on the new-physics scale associated with each operator, an analysis of various features of the models, and a look at some examples. We find that a number of operators do not admit any completions not also generating lower-dimensional operators or larger contributions to the neutrino mass, ruling them out as playing a dominant role in the neutrino-mass generation. Additionally, we show that there are at most five models containing three or fewer exotic multiplets that predict new physics that must lie below 100 TeV. Accompanying this work we also make available a searchable database containing all of our results and the code used to find the completions. We emphasise that our methods extend beyond the study of neutrino-mass models, and may be useful for generating completions of high-dimensional operators in other effective field theories. Example code: ref. [37].


2015 ◽  
Vol 93 (12) ◽  
pp. 1561-1565
Author(s):  
Ng. K. Francis

We construct the neutrino mass models with non-vanishing θ13 and estimate the baryon asymmetry of the universe and subsequently derive the constraints on the inflaton mass and the reheating temperature after inflation. The great discovery of this decade, the detection of Higgs boson of mass 126 GeV and nonzero θ13, makes leptogenesis all the more exciting. Besides, the neutrino mass model is compatible with inflaton mass 1010–1013 GeV corresponding to reheating temperature TR ∼ 105–107 GeV to overcome the gravitino constraint in supersymmetry and big bang nucleosynthesis. When Daya Bay data θ13 ≈ 9° is included in the model, τ predominates over e and μ contributions, which are indeed a good sign. It is shown that neutrino mass models for a successful leptogenesis can be accommodated for a variety of inflationary models with a rather wide ranging inflationary scale.


Sign in / Sign up

Export Citation Format

Share Document