scholarly journals Estimation precision of parameter associated with Unruh-like effect

2021 ◽  
Vol 967 ◽  
pp. 115408
Author(s):  
Zixu Zhao ◽  
Shuhang Zhang ◽  
Qiyuan Pan ◽  
Jiliang Jing
Keyword(s):  
Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3043 ◽  
Author(s):  
Weike Zhang ◽  
Xi Chen ◽  
Kaibo Cui ◽  
Tao Xie ◽  
Naichang Yuan

In order to improve the angle measurement performance of a coprime linear array, this paper proposes a novel direction-of-arrival (DOA) estimation algorithm for a coprime linear array based on the multiple invariance estimation of signal parameters via rotational invariance techniques (MI-ESPRIT) and a lookup table method. The proposed algorithm does not require a spatial spectrum search and uses a lookup table to solve ambiguity, which reduces the computational complexity. To fully use the subarray elements, the DOA estimation precision is higher compared with existing algorithms. Moreover, the algorithm avoids the matching error when multiple signals exist by using the relationship between the signal subspace of two subarrays. Simulation results verify the effectiveness of the proposed algorithm.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 805
Author(s):  
Jia Xu ◽  
Shangshu Yang ◽  
Weifeng Lu ◽  
Lijie Xu ◽  
Dejun Yang

The recent development of human-carried mobile devices has promoted the great development of mobile crowdsensing systems. Most existing mobile crowdsensing systems depend on the crowdsensing service of the deep cloud. With the increasing scale and complexity, there is a tendency to enhance mobile crowdsensing with the edge computing paradigm to reduce latency and computational complexity, and improve the expandability and security. In this paper, we propose an integrated solution to stimulate the strategic users to contribute more for truth discovery in the edge-assisted mobile crowdsensing. We design an incentive mechanism consisting of truth discovery stage and budget feasible reverse auction stage. In truth discovery stage, we estimate the truth for each task in both deep cloud and edge cloud. In budget feasible reverse auction stage, we design a greedy algorithm to select the winners to maximize the quality function under the budget constraint. Through extensive simulations, we demonstrate that the proposed mechanism is computationally efficient, individually rational, truthful, budget feasible and constant approximate. Moreover, the proposed mechanism shows great superiority in terms of estimation precision and expandability.


2013 ◽  
Author(s):  
Xinxue Ma ◽  
Jianli Wang ◽  
Bin Wang ◽  
Hongzhuang Li ◽  
Yuanhao Wu ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Sheng Liu ◽  
Jing Zhao ◽  
Yu Zhang

In this paper, an improved propagator method (PM) is proposed by using a two-parallel array consisting of two uniform large-spacing linear arrays. Because of the increase of element spacing, the mutual coupling between two sensors can be reduced. Firstly, two matrices containing elevation angle information are obtained by PM. Then, by performing EVD of the product of the two matrices, the elevation angles of incident signals can be estimated without direction ambiguity. At last, the matrix product is used again to obtain the estimations of azimuth angles. Compared with the existed PM algorithms based on conventional uniform two-parallel linear array, the proposed PM algorithm based on the large-spacing linear arrays has higher estimation precision. Many simulation experiments are presented to verify the effect of proposed scheme in reducing the mutual coupling and improving estimation precision.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1197
Author(s):  
Sholeh Razavian ◽  
Matteo G. A. Paris ◽  
Marco G. Genoni

The estimation of more than one parameter in quantum mechanics is a fundamental problem with relevant practical applications. In fact, the ultimate limits in the achievable estimation precision are ultimately linked with the non-commutativity of different observables, a peculiar property of quantum mechanics. We here consider several estimation problems for qubit systems and evaluate the corresponding quantumnessR, a measure that has been recently introduced in order to quantify how incompatible the parameters to be estimated are. In particular, R is an upper bound for the renormalized difference between the (asymptotically achievable) Holevo bound and the SLD Cramér-Rao bound (i.e., the matrix generalization of the single-parameter quantum Cramér-Rao bound). For all the estimation problems considered, we evaluate the quantumness R and, in order to better understand its usefulness in characterizing a multiparameter quantum statistical model, we compare it with the renormalized difference between the Holevo and the SLD-bound. Our results give evidence that R is a useful quantity to characterize multiparameter estimation problems, as for several quantum statistical model, it is equal to the difference between the bounds and, in general, their behavior qualitatively coincide. On the other hand, we also find evidence that, for certain quantum statistical models, the bound is not in tight, and thus R may overestimate the degree of quantum incompatibility between parameters.


Sign in / Sign up

Export Citation Format

Share Document