Open water performance comparison between hub-type and hubless rim driven thrusters based on CFD method

2015 ◽  
Vol 103 ◽  
pp. 55-63 ◽  
Author(s):  
Bao-wei Song ◽  
You-jiang Wang ◽  
Wen-long Tian
2013 ◽  
Vol 694-697 ◽  
pp. 673-677 ◽  
Author(s):  
Da Zheng Wang ◽  
Dan Wang ◽  
Lei Mei ◽  
Wei Chao Shi

In this paper, the open water performance of a pod propeller in the viscous flow fields is numerically simulated by the Computational Fluid Dynamics (CFD) method. Based on the coordinate transformation formula for transforming the local to the global coordinate, mathematical model of a propeller is created. Thrust and torque coefficients corresponding to different advance coefficients of the model are calculated by ANSYS-CFX with three different turbulence models. The pressure distributions on the blade surface are also presented. Comparisons show that experimental results and numerical results agree well, with SST k-ω and RNG k-ε more accurate than the standard k-ε.


2015 ◽  
Author(s):  
Mohammed Islam ◽  
Fatima Jahra ◽  
Michael Doucet

Mesh and domain optimization strategies for a RANS solver to accurately estimate the open water propulsive characteristics of fixed pitch propellers are proposed based on examining the effect of different mesh and computation domain parameters. The optimized mesh and domain size parameters were selected using Design of Experiments (DoE) methods enabling simulations to be carried out in a limited memory environment, and in a timely manner; without compromising the accuracy of results. A Reynolds-Averaged Navier Stokes solver is used to predict the propulsive performance of a fixed pitch propeller. The predicted thrust and torque for the propeller were compared to the corresponding measurements. A total of six meshing parameters were selected that could affect the computational results of propeller open water performance. A two-level fractional factorial design was used to screen out parameters that do not significantly contribute to explaining the dependent parameters: namely simulation time, propeller thrust and propeller torque. A total of 32 simulations were carried out only to find out that the selected six meshing parameters were significant in defining the response parameters. Optimum values of each of the input parameters were obtained for the DOE technique and additional simulations were run with those parameters. The simulation results were validated using open water experimental results of the same propeller. It was found that with the optimized meshing arrangement, the propeller opens simulation time was reduced by at least a factor of 6 as compared to the generally popular meshing arrangement. Also, the accuracy of propulsive characteristics was improved by up to 50% as compared to published simulation results. The methodologies presented in this paper can be similarly applied to other simulations such as calm water ship resistance, ship propulsion to systematically derive the optimized meshing arrangement for simulations with minimal simulation time and maximum accuracy. This investigation was carried out using STAR-CCM+, a commercial CFD package; however the findings can be applied to any RANS solver.


Author(s):  
Soonseok Song ◽  
Yigit Kemal Demirel ◽  
Mehmet Atlar

Abstract The negative effect of biofouling on ship resistance has been investigated since the early days of naval architecture. However, for more precise prediction of fuel consumption of ships, understanding the effect of biofouling on ship propulsion performance is also important. In this study, CFD simulations for the full-scale performance of KP505 propeller in open water, including the presence of marine biofouling, were conducted. To predict the effect of barnacle fouling on the propeller performance, experimentally obtained roughness functions of barnacle fouling were employed in the wall-function of the CFD software. The roughness effect of barnacles of varying sizes and coverages on the propeller open water performance was predicted for advance coefficients ranging from 0.2 to 0.8. From the simulations, drastic effects of barnacle fouling on the propeller open water performance were found. The result suggests that the thrust coefficient decreases while the torque coefficient increases with increasing level of surface fouling, which leads to a reduction of the open water efficiency of the propeller. Further investigations into the roughness effect on the pressure and velocity field, surface pressure and wall shear stress, and propeller vortices were examined.


2018 ◽  
Vol 6 (1) ◽  
pp. 27 ◽  
Author(s):  
João Baltazar ◽  
Douwe Rijpkema ◽  
José Falcão de Campos ◽  
Johan Bosschers

2019 ◽  
Vol 16 (1) ◽  
pp. 1-20
Author(s):  
Mohammed Islam ◽  
Fatima Jahra

This research proposes mesh and domain optimization strategies for a popular Computational Fluid Dynamics (CFD) technique to estimate the open water propulsive characteristics of fixed pitch propellers accurately and time-efficiently based on examining the effect of various mesh and computation domain parameters. It used a Reynolds-Averaged Navier-Stokes (RANS) solver to predict the propulsive performance of a fixed pitch propeller with varied meshing, simulation domain and setup parameters. The optimized mesh and domain size parameters were selected using Design of Experiments (DoE) methods enabling simulations in a limited memory and in a timely manner without compromising the accuracy of results. The predicted thrust and torque for the propeller were compared to the corresponding measurements for determining the prediction accuracy. The authors found that the optimized meshing and setup arrangements reduced the propeller opens simulation time by at least a factor of six as compared to the generally popular CFD parameter setup. In addition, the accuracy of propulsive characteristics was improved by up to 50% as compared to published simulation results. The methodologies presented in this paper can be similarly applied to other simulations such as calm water ship resistance, ship propulsion etc. to systematically derive the optimized meshing arrangement for simulations with minimal simulation time and maximum accuracy. This investigation was carried out using a commercial CFD package; however, the findings can be applied to any RANS solver.


Author(s):  
Soonseok Song ◽  
Yigit Kemal Demirel ◽  
Mehmet Atlar

Abstract The negative effect of biofouling on ship resistance has been investigated since the early days of naval architecture. However, for more precise prediction of fuel consumption of ships, understanding the effect of biofouling on ship propulsion performance is also important. In this study, computational fluid dynamics (CFD) simulations for the full-scale performance of KP505 propeller in open water, including the presence of marine biofouling, were conducted. To predict the effect of barnacle fouling on the propeller performance, experimentally obtained roughness functions of barnacle fouling were used in the wall-function of the CFD software. The roughness effect of barnacles of varying sizes and coverages on the propeller open water performance was predicted for advance coefficients ranging from 0.2 to 0.8. From the simulations, drastic effects of barnacle fouling on the propeller open water performance were found. The result suggests that the thrust coefficient decreases while the torque coefficient increases with increasing level of surface fouling, which leads to a reduction of the open water efficiency of the propeller. Using the obtained result, the penalty of propeller fouling on the required shaft power was predicted. Finally, further investigations were made into the roughness effect on the flow characteristics around the propeller and the results were in correspondence with the findings on the propeller open water performance.


2019 ◽  
Vol 7 (11) ◽  
pp. 386 ◽  
Author(s):  
Kang ◽  
Kim ◽  
Kim ◽  
Shin

This study provides a comparison of propulsion performance, with a particular focus on efficiency, by varying rake distribution at the tips of propellers. Owing to increased attention to environmental pollution, there is a significant interest in reducing the energy efficiency design index (EEDI) and SOx emissions by improving the performance in the field of shipbuilding. The forward (Kappel) [1] and backward tip rake propellers have been widely used to improve efficiency, as well as to reduce fluctuating pressure from the tip vortex cavitation. As there is almost no parametric and design research on tip rake propellers, this systematic parametric study was conducted to identify the optimal configuration by the potential code. For this performance comparison the KP505 (KCS propeller) was chosen as the reference propeller as the tips of that propeller have no rake. The model test and computational fluid dynamics (CFD) calculation confirmed the result by comparing the open water performances for the three optimally selected propellers (forward, backward, KP505). The differences of efficiency obtained from the potential analysis and the model test exhibit similar tendencies, but the result for the CFD is different. The difference would be investigated by changing the grid system around the tip as well as the turbulence model in the CFD analysis. An analysis of self-propulsion and pressure fluctuation is also expected to be conducted in the near future.


Sign in / Sign up

Export Citation Format

Share Document