Determination of hydrodynamic coefficients of the floating cage collar with forced oscillation experiments

2018 ◽  
Vol 159 ◽  
pp. 175-186 ◽  
Author(s):  
Zhijing Xu ◽  
Hongde Qin ◽  
Igor Tsukrov
Author(s):  
Xavier Arino ◽  
Jaap de Wilde ◽  
Massimiliano Russo ◽  
Guttorm Grytøyr ◽  
Michael Tognarelli

Large scale model tests have been conducted in a towing tank facility for the determination of the hydrodynamic coefficients of subsea blowout preventers. A subsea blowout preventer (BOP) is a large, complex device 10–15 [m] tall, weighing 200–450 [ton]. The BOP stack consists of two assemblies, the ‘lower marine riser package’ (LMRP) connected to the riser string and the BOP itself, connected to the wellhead. Together they represent a large lumped mass, which directly influences the natural frequencies and vibration modes of the riser system, particularly those of the BOP-wellhead-casing assembly. Large uncertainties in the estimates of the hydrodynamic coefficients (added mass, lift and drag or damping) result in large uncertainties in the fatigue damage predictions of the riser and wellhead system. The trend toward larger and heavier BOPs, which could place BOP-wellhead-casing oscillation frequencies in the range of wave frequencies, has motivated Statoil and BP to start a new research project on this subject. The project involves a large scale model test for experimental determination of hydrodynamic coefficients. Two different BOP designs were tested in a towing tank at model scale 1:12. The models weighed about 50 [kg] in air and were about 1.2–1.5 [m] tall. A six-degree-of-freedom oscillator was mounted under the carriage of the towing tank for oscillation of the models in different directions. Static tow tests and forced oscillation tests with and in the absence of steady current were carried out. Keulegan-Carpenter (KC) numbers ranged between 0.2 and 2.0, while the Sarpkaya frequency parameter β was in the range from 4,000 to 50,000. The Reynolds numbers of the static tow tests ranged between 50,000 and 150,000. This paper focuses particularly on tests in the surge direction with and in the absence of a steady current. Results indicate that the hydrodynamic coefficients for BOP stacks are quite different from those of simpler geometries like a circular cylinder. In addition, they provide new insight for analytical modeling of global hydrodynamic forces on BOPs in many configurations and scenarios.


Author(s):  
Amin Najafi ◽  
Mohammad Saeed Seif

Determination of high-speed crafts’ hydrodynamic coefficients will help to analyze the dynamics of these kinds of vessels and the factors affecting their dynamic stabilities. Also, it can be useful and effective in controlling the vessel instabilities. The main purpose of this study is to determine the coefficients of longitudinal motions of a planing catamaran with and without a hydrofoil using Reynolds-averaged Navier–Stokes method to evaluate the foil effects on them. Determination of hydrodynamic coefficients by experimental approach is costly and requires meticulous laboratory equipment; therefore, utilizing the numerical methods and developing a virtual laboratory seem highly efficient. In this study, the numerical results for hydrodynamic coefficients of a high-speed craft are verified against Troesch’s experimental results. In the following, after determination of hydrodynamic coefficients of a planing catamaran with and without foil, the foil effects on its hydrodynamic coefficients are evaluated. The results indicate that most of the coefficients are frequency-independent especially at high frequencies.


Author(s):  
В.Ю. Семенова ◽  
К.И. Баканов

В статье рассматривается определение коэффициентов демпфирования и присоединенных масс, возникающих при совместной качке двух судов в условиях мелководья параллельно вертикальной стенке на основании решения трехмерной потенциальной задачи. Определение гидродинамических коэффициентов осуществляется на основании методов интегральных уравнений и зеркальных отображений. Представленное решение в отечественной практике является новым. В статье приводятся результаты расчетов коэффициентов присоединенных масс и демпфирования, возникающих при качке двух одинаковых судов, расположенных лагом к волнению и параллельно вертикальной стенке в зависимости от изменения расстояний как между судами, так и между судами и вертикальной стенкой. Проводится исследование влияния различных фарватеров на величины гидродинамических коэффициентов, а именно: мелководного фарватера, мелководного фарватера с вертикальной стенкой, мелководного фарватера со вторым параллельно качающимся судном и мелководного фарватера с вертикальной стенкой и вторым судном. Таким образом, в работе учитывается одновременное влияния мелководья, вертикальной стенки и второго судна. Показано увеличение значений коэффициентов присоединенных масс и демпфирования при уменьшении расстояний между судами и между судами и вертикальной стенкой. Также показано значительное совместное влияние вертикальной стенки и второго судна на коэффициенты присоединенных масс и демпфирования по сравнению с другими видами стесненных фарватеров. The article discusses the determination of damping coefficients and added masses arising from the joint motions of two ships in shallow water conditions parallel to the vertical wall based on the solution of a three-dimensional potential problem. Determination of hydrodynamic coefficients is carried out on the basis of the methods of integral equations and mirror images. The solution presented in the national practice is new The article presents the results of calculating the coefficients of added masses and damping arising from the motions of two identical ships located lagged to the sea and parallel to the vertical wall, depending on the change in the distances between the ships and between the ships and the vertical wall. A study is being made of the influence of various waterways on the values ​​of hydrodynamic coefficients, namely: a shallow waterway, a shallow waterway with a vertical wall, a shallow waterway with a second parallel oscillating ship and a shallow waterway with a vertical wall and a second ship. Thus, the work takes into account the simultaneous influence of shallow water, vertical wall and the second ship. An increase in the values of the coefficients of added masses and damping with a decrease in the distances between ships and between ships and the vertical wall is shown. It also shows a significant combined effect of the vertical wall and the second ship on the added mass and damping coefficients in comparison with other types of constrained waterways.


Author(s):  
E Javanmard ◽  
Sh Mansoorzadeh ◽  
A Pishevar ◽  
J A Mehr

Determination of hydrodynamic coefficients is a vital part of predicting the dynamic behavior of an Autonomous Underwater Vehicle (AUV). The aim of the present study was to determine the drag and lift related hydrodynamic coefficients of a research AUV, using Computational and Experimental Fluid Dynamics methods. Experimental tests were carried out at AUV speed of 1.5 m s-1 for two general cases: I. AUV without control surfaces (Hull) at various angles of attack in order to calculate Hull related hydrodynamic coefficients and II. AUV with control surfaces at zero angle of attack but in different stern angles to calculate hydrodynamic coefficients related to control surfaces. All the experiments carried out in a towing tank were also simulated by a commercial computational fluid dynamics (CFD) code. The hydrodynamic coefficients obtained from the numerical simulations were in close agreement with those obtained from the experiments.


Author(s):  
Wenjun Shen ◽  
Yougang Tang ◽  
Liqin Liu

The hydrodynamic characteristics of heave plates are studied in this paper. Firstly, different motion amplitudes and plate spacing influencing hydrodynamic coefficients are considered. Secondly, heave plates with different thicknesses are calculated, the case of edges with inclined form for heave plate is also taken into account. Numerical simulations are made for the plate forced oscillation, employing the dynamic mesh method and UDF (User defined functions). The values of Cm and Cd for heave plate are calculated. It is found that, in a certain amplitude range, Cm increases with increasing of amplitudes, Cd decreases with increasing of amplitudes. The values of Cm and Cd increase with increasing of plate spacing. Furthermore with the same effective thickness, the hydrodynamic performance of heave plate with inclined form is improved greatly.


Author(s):  
Fredrik Mentzoni ◽  
Mia Abrahamsen-Prsic ◽  
Trygve Kristiansen

Simplified two-dimensional models, representing components of complex subsea structures, are experimentally investigated. Individual as well as combinations of components in different configurations are tested, in order to study the effect of hydrodynamic interaction. The components include porous plates and cylindrical pipes with circular cross-section. Hydrodynamic added mass and damping coefficients, relevant for force estimation during lifting operations, are presented. The coefficients are obtained based on forced oscillation tests for a large range of Keulegan–Carpenter (KC) numbers and forcing periods, and compared to numerical source panel results for the low KC limit, as well as recommendations given by DNV GL, where relevant. Coefficients for all configurations are found to be highly amplitude dependent. Significant interaction effects are found for the assembled structures, causing either reduced or increased total added mass and damping coefficients compared to the super-position of the coefficients for individual members.


Author(s):  
Hyunchul Jang ◽  
Jang Whan Kim

Abstract Vortex-Induced Vibration (VIV) is one of the main sources of fatigue damage for long slender risers. Typical VIV assessment of risers is conducted using semi-empirical software tools with the sectional hydrodynamic coefficients derived from forced-oscillation model tests on short rigid riser sections. The Steel Lazy Wave Riser (SLWR) with buoyancy sections is an attractive concept for improving fatigue performance in deep water developments, but there is limited model test data available for the hydrodynamic coefficients on SLWR’s. CFD simulation is an alternative VIV assessment tool, once it is validated for an existing model test. It can provide accurate estimates of VIV response and help to design configurations of SLWR’s without additional model tests. The present CFD simulations are performed to validate hydrodynamic coefficients of a SLWR section. The predicted drag and excitation (lift) coefficients on both bare riser and buoyancy sections are compared to the test data with respect to oscillation frequency and amplitude.


1979 ◽  
Vol 23 (03) ◽  
pp. 175-187
Author(s):  
Carl A. Scragg

This paper discusses the error introduced into maneuvering predictions by the use of a set of linearized equations of motion which ignore memory effects. After incorporating certain improvements into the impulse-response technique for the determination of hydrodynamic coefficients, experiments were conducted to measure a complete set of the coefficients. Maneuvering predictions were then made using two different sets of linearized equations of motion, one of which included memory effects and one which excluded memory effects. It was determined that significant errors occurred only during the initial phase of the maneuver, and that memory effects could be safely ignored for most deepwater maneuvering problems.


1977 ◽  
Vol 42 (4) ◽  
pp. 650-655 ◽  
Author(s):  
H. Aronsson ◽  
L. Solymar ◽  
J. Dempsey ◽  
J. Bjure ◽  
T. Olsson ◽  
...  

We present a modification of forced oscillation technique for automated determination of total respiratory resistance during inspiration. The modifications consist of a computerized signal averaging and an optimization technique in the assessment of the resistance value. Thereby a favorable signal-to-noise ratio is obtained, allowing very low superimposed pressure oscillations. The method is validated by comparison with a conventional esophageal balloon method, by estimating added mechanical resistances in healthy subjects and by measuring the effect of bronchodilation in asthmatic children. The coefficient of variation as obtained from day-to-day measurements was about 7%. Mechanical resistances, estimated as the difference in total resistance with and without external resistance, were within 7% of their values determined for the resistances alone. A significant decrease in resistance was obtained in each of the asthmatic children following bronchodilation.


Sign in / Sign up

Export Citation Format

Share Document