scholarly journals Numerical study on hydrodynamic load of real-world tsunami wave at highway bridge deck using a coupled modeling system

2019 ◽  
Vol 192 ◽  
pp. 106486 ◽  
Author(s):  
K. Qu ◽  
W.Y. Sun ◽  
H.S. Tang ◽  
C.B. Jiang ◽  
B. Deng ◽  
...  
2021 ◽  
Author(s):  
Soufiane el Ogri ◽  
Charles-Darwin Annan ◽  
Pampa Dey

<p>This article concerns the behaviour of two blind bolt types, Ajax One side and Blind Oversize Mechanically (BOM), used to connect a multi-void aluminum bridge deck on its supporting steel girders. An extensive numerical simulation by FEM was performed to evaluate the connection behaviour against the Canadian Highway Bridge Design standard CSA S6-19. The main objective was to examine the assembly against fretting and quantify its impact at the contact zone over several load cycles. A special numerical model was developed for the prediction of fretting, and validated with analytical results and other observations reported in the literature. The model was used to analyze the fretting for each bolt at the surface of contact between the bolt head and the aluminum plate. Results of the study revealed that the blind bolts will lead to a few micrometers of wear, while for the standard bolt, a probable crack developments associated with minor wear may occur at the contact area.</p>


2021 ◽  
Vol 230 ◽  
pp. 111689
Author(s):  
Zheqi Peng ◽  
Xin Wang ◽  
Lining Ding ◽  
Yizhi Yang ◽  
Zhishen Wu ◽  
...  

2021 ◽  
Vol 31 (5) ◽  
pp. 1373-1395
Author(s):  
Iman Mazinani ◽  
Mohammad Mohsen Sarafraz ◽  
Zubaidah Ismail ◽  
Ahmad Mustafa Hashim ◽  
Mohammad Reza Safaei ◽  
...  

Purpose Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges. Design/methodology/approach Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results. Findings The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research. Originality/value Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.


Author(s):  
K. Qu ◽  
G. Y. Lan ◽  
S. Kraatz ◽  
W. Y. Sun ◽  
B. Deng ◽  
...  

The extreme surges and waves generated in tsunamis can cause devastating damages to coastal infrastructures and threaten the intactness of coastal communities. After the 2004 Indian Ocean tsunami, extensive physical experiments and numerical simulations have been conducted to understand the wave attenuation of tsunami waves due to coastal forests. Nearly all prior works used solitary waves as the tsunami wave model, but the spatial-temporal scales of realistic tsunamis differ drastically from that of solitary waves in both wave period and wavelength. More recent work has questioned the applicability of solitary waves and been looking towards more realistic tsunami wave models. Therefore, aiming to achieve more realistic and accurate results, this study will use a parameterized tsunami-like wave based on wave observations during the 2011 Japan tsunami to study the wave attenuation of a tsunami wave by emergent rigid vegetation. This study uses a high-resolution numerical wave tank based on the non-hydrostatic wave model (NHWAVE). This work examines effects of prominent factors, such as wave height, water depth, vegetation density and width, on the wave attenuation efficiency of emergent rigid vegetation. Results indicate that the vegetation patch can dissipate a considerable amount of the total wave energy of the tsunami-like wave. However, the tsunami-like wave has a higher total wave energy, but also a lower wave energy dissipation rate. Results show that using a solitary instead of a tsunami-like wave profile can overestimate the wave attenuation efficiency of the coastal forest.


2017 ◽  
Vol 8 (2) ◽  
pp. 82-101
Author(s):  
Bijan Kumar Roy

This article deals with the study of optimum performance of isolated bridge systems under stochastic earthquake load considering uncertain system parameters. The conditional stochastic response quantities are obtained in random vibration framework using the state space formulation. Subsequently, with the aid of matrix perturbation theory using first order Taylor series expansion of dynamic response function and its interval extension, the vibration control problem is transformed to appropriate deterministic optimization problems. This requires two separate objective functions correspond to a lower and upper bound optimum solutions. A lead rubber bearing system for isolating a bridge deck from a pier is considered for numerical study to elucidate the optimum performance of isolated bridge deck system. Then a numerical study is performed to observe the effect of parameter uncertainty on the optimization of the isolator parameters and the response reduction efficiency. It is seen that neglecting the effect of system parameter uncertainty may overestimate the system performance.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6633
Author(s):  
Weidong Lyu ◽  
Hefu Pu ◽  
Jiannan (Nick) Chen ◽  
Zelei Gao

Ground source deicing system application in bridge decks is an alternative to salt use, which reduces corrosion and extends the deck service life. Herein, a preliminary parametric numerical analysis is performed to investigate the effects of several important parameters (tube spacing, inlet temperature, flow rate, and concrete cover) on heat transfer performance. Three evaluation indexes (average top surface temperature, snow melting proportion, and heat absorption power) are introduced, and a synthetic evaluation index is proposed to comprehensively consider factors. Mainly referring to the synthetic evaluation index, the optimal design scheme of a geothermally heated bridge deck system under various conditions (layout, lane number, ambient temperature, and tube spacing) is obtained and analyzed to determine the optimal inlet temperature and guide heated bridge deck design. Finally, the influence of wind speed and two adjustment methods are studied. The results indicate that the horizontal layout is the recommended circulating tube layout. The established empirical equations reveal that the optimal inlet temperature is linearly related to ambient temperature and exhibits a quadratic relationship with tube spacing. There is no need to add a heat insulation layer at the bridge deck bottom, and only tubes arranged near the wheels in lanes are recommended.


2008 ◽  
Vol 17 (3) ◽  
pp. 494-495
Author(s):  
Yifan SONG ◽  
Rongfeng CHEN ◽  
Shuanhai HE
Keyword(s):  

2006 ◽  
Vol 92 (8) ◽  
pp. 20-25
Author(s):  
Robert Liang ◽  
Inmar Badwan

Sign in / Sign up

Export Citation Format

Share Document