scholarly journals Effect of pitch angle on power and hydrodynamics of a vertical axis turbine

2021 ◽  
Vol 238 ◽  
pp. 109335
Author(s):  
Minh Thao Nguyen ◽  
Francesco Balduzzi ◽  
Anders Goude
Author(s):  
Longhuan Du ◽  
Grant Ingram ◽  
Robert G Dominy

The H-Darrieus vertical axis turbine is one of the most promising wind energy converters for locations where there are rapid variations of wind direction, such as in the built environment. The most challenging considerations when employing one of these usually small machines are to ensure that they self-start and to maintain and improve their efficiency. However, due to the turbine's rotation about a vertical axis, the aerodynamics of the turbine are more complex than a comparable horizontal axis wind turbine and our knowledge and understanding of these turbines falls remains far from complete. This paper provides a detailed review of past and current studies of the H-Darrieus turbine from the perspective of design parameters including turbine solidity, blade profile, pitch angle, etc. and particular focus is put on the crucial challenge to design a turbine that will self-start. Moreover, this paper summarizes the main research approaches for studying the turbine in order to identify successes and promising areas for future study.


2012 ◽  
Vol 499 ◽  
pp. 259-264
Author(s):  
Qi Yao ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
S.Y. Zheng

This paper presents a simulation study of an H-type vertical axis wind turbine. Two dimensional CFD model using sliding mesh technique was generated to help understand aerodynamics performance of this wind turbine. The effect of the pith angle on H-type vertical axis wind turbine was studied based on the computational model. As a result, this wind turbine could get the maximum power coefficient when pitch angle adjusted to a suited angle, furthermore, the effects of pitch angle and azimuth angle on single blade were investigated. The results will provide theoretical supports on study of variable pitch of wind turbine.


2016 ◽  
Vol 179 ◽  
pp. 875-887 ◽  
Author(s):  
Min-Hsiung Yang ◽  
Guan-Ming Huang ◽  
Rong-Hua Yeh

2020 ◽  
Vol 2020 (0) ◽  
pp. OS09-12
Author(s):  
Keisuke KITANO ◽  
Yasutaka HAYAMIZU ◽  
Takayuki SUZUKI ◽  
Shinichi MORITA ◽  
Shigeru OHTSUKA ◽  
...  

2021 ◽  
Vol 2021.59 (0) ◽  
pp. 07a5
Author(s):  
Keisuke KITANO ◽  
Yasutaka HAYAMIZU ◽  
Takayuki SUZUKI ◽  
Shigeru OHTSUKA ◽  
Shinichi MORITA ◽  
...  

2019 ◽  
pp. 29-55
Author(s):  
Grady Koch ◽  
Elias Koch

2013 ◽  
Vol 47 (4) ◽  
pp. 36-44 ◽  
Author(s):  
Prasun Chatterjee ◽  
Raymond N. Laoulache

AbstractVertical axis turbines (VATs) excel over horizontal axis turbines in their independent flow direction. VATs that operate in an enclosure, e.g., a diffuser shroud, are reported to generate more power than unducted VATs. A diffuser-shrouded, high solidity of 36.67%, three-blade VAT with NACA 633-018 airfoil section is modeled in 2-D using the commercial software ANSYS-FLUENT®. Incompressible, unsteady, segregated, implicit, and second order in time and space solver is implemented in association with the Spalart-Allmaras turbulent model with a reasonable computational cost. The computational results are assessed against experimental data for unducted VAT at low tip speed ratios between 1 and 2 for further numerical analysis on diffuser models. Different diffuser designs are investigated using suitable nozzle size, area ratio, length-to-diameter ratio and angles between the diffuser inner surfaces. The numerical model shows that, for a specific diffuser design, the ducted VAT performance coefficient can be augmented by almost 90% over its unducted counterpart.


Sign in / Sign up

Export Citation Format

Share Document