An improved CIP-based numerical model for simulating free-surface flow with adaptive mesh

2021 ◽  
Vol 239 ◽  
pp. 109840
Author(s):  
Yiyang Zong ◽  
Xizeng Zhao ◽  
Hongyue Sun ◽  
Ronghua Zhu
2012 ◽  
Vol 1 (33) ◽  
pp. 7
Author(s):  
Hung-Chu Hsu ◽  
A. Torres-Freyermuth ◽  
Tian-Jian Hsu ◽  
Hwung-Hweng Hwung

Regarding the hydrodynamics, within the past two decades it has become popular in numerical modeling of free-surface flow to adopt a Reynolds-averaged Navier-Stokes approach, where the volume of fluid (VOF) method is utilized to track the evolution of free-surface. However, this robust numerical model has not been widely applied to the study of sediment transport processes. In this study, we shall extend the numerical model to simulate suspended sediment transport and study the erosion pattern during the initial stage of the dam break flow. We also conducted a series of experiments in a horizontal channel of rectangular section and recorded the snap shots of surface profiles of a dam- break wave during the initial stage of dam-break. Measured data is utilized here to study the hydrodynamics and to validate the numerical model.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1048 ◽  
Author(s):  
Andrea Luigi Facci ◽  
Giacomo Falcucci ◽  
Antonio Agresta ◽  
Chiara Biscarini ◽  
Elio Jannelli ◽  
...  

In this paper we present a computational model for the fluid structure interaction of a buoyant rigid body immersed in a free surface flow. The presence of a free surface and its interaction with buoyant bodies make the problem very challenging. In fact, with light (compared to the fluid) or very flexible structures, fluid forces generate large displacements or accelerations of the solid and this enhances the artificial added mass effect. Such a problem is relevant in particular in naval and ocean engineering and for wave energy harvesting, where a correct prediction of the hydrodynamic loading exerted by the fluid on buoyant structures is crucial. To this aim, we develop and validate a tightly coupled algorithm that is able to deal with large structural displacement and impulsive acceleration typical, for instance, of water entry problems. The free surface flow is modeled through the volume of fluid model, the finite volume method is utilized is to discretize the flow and solid motion is described by the Newton-Euler equations. Fluid structure interaction is modeled through a Dirichlet-Newmann partitioned approach and tight coupling is achieved by utilizing a fixed-point iterative procedure. As most experimental data available in literature are limited to the first instants after the water impact, for larger hydrodynamic forces, we specifically designed a set of dedicated experiments on the water impact of a buoyant cylinder, to validate the proposed methodology in a more general framework. Finally, to demonstrate that the proposed numerical model could be used for a wide range of engineering problems related to FSI in multiphase flows, we tested the proposed numerical model for the simulation of a floating body.


Author(s):  
Hamed Azimi ◽  
Saeid Shabanlou ◽  
Isa Ebtehaj ◽  
Hossein Bonakdari

AbstractIn this study, the flow turbulence and variations of the supercritical free surface flow in a circular channel along a side weir are simulated as three dimensional using the RNG k-ε turbulence model and volume of fluid (VOF) scheme. Comparison between the numerical model and experimental measurements shows that the numerical model simulates the free surface flow with good accuracy. According to the numerical model results, the specific energy variations along the side weir for the supercritical flow regime are almost constant and the energy drop is not significant but by increasing the side weir length the energy difference between the side weir upstream and downstream increases. Next, using the nonlinear regression (NLR) and analysis of the simulation results, some relationships for calculating the discharge coefficient of side weir on circular channels in supercritical flow regime are provided.


2010 ◽  
Vol 48 (2) ◽  
pp. 141-151 ◽  
Author(s):  
Jacques Chorda ◽  
Marie Madeleine Maubourguet ◽  
Hélène Roux ◽  
Michel Larinier ◽  
Laurent Tarrade ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 350
Author(s):  
Georgios A. Leftheriotis ◽  
Iason A. Chalmoukis ◽  
Guillermo Oyarzun ◽  
Athanassios A. Dimas

An advanced numerical model is presented for the simulation of wave-induced free-surface flow, utilizing an efficient hybrid parallel implementation. The model is based on the solution of the Navier–Stokes equations using large-eddy simulation of large-scale coastal free-surface flows. The three-dimensional immersed boundary method was used for the enforcement of the no-slip boundary condition on the bed surface. The water-air interface was tracked using the level-set method. The numerical model was effectively validated against laboratory measurements involving wave propagation over a flatbed with an elliptical shoal, whose presence induces combined wave refraction and diffraction phenomena. The parallel implementation of the model enabled the efficient simulation of depth-resolved, wave-induced, three-dimensional, free-surface flow; the model parallel efficiency and strong scaling are quantitatively demonstrated.


Sign in / Sign up

Export Citation Format

Share Document