Effects of wave nonlinearity on submerged flexible vegetation dynamics and wave attenuation

2021 ◽  
Vol 241 ◽  
pp. 110103
Author(s):  
Kai Yin ◽  
Sudong Xu ◽  
Shangpeng Gong ◽  
Runpu Zhou ◽  
Yiran Wang
2019 ◽  
Vol 145 (1) ◽  
pp. 04018033 ◽  
Author(s):  
Steven A. Mattis ◽  
Christopher E. Kees ◽  
Maya V. Wei ◽  
Aggelos Dimakopoulos ◽  
Clint N. Dawson

Author(s):  
Yavuz Ozeren ◽  
Daniel Wren ◽  
Weiming Wu

In this study, wave height evolution and wave setup were measured in a laboratory wave tank with a sloping beach covered with rigid and flexible artificial vegetation under regular and irregular wave conditions. The experiments were conducted in a 20.6 m long, 0.69 m wide and 1.22 m deep wave tank at the USDA-ARS National Sedimentation Laboratory, Oxford, MS, USA. Regular and irregular waves were generated using a computer controlled piston type wave generator. A plane wooden beach with a 1:21 slope was constructed at the down-wave end of the wave tank, 11.5 m away from the wave paddle. Rigid vegetation was constructed out of wooden dowels and flexible vegetation was constructed using polyurethane tubes. Both vegetation models were 3.1 mm in diameter and 0.2 m long and had a population density of 3,182 stems/m2. The results were compared with those from experiments on a non-vegetated plane beach. Both rigid and flexible vegetation models reduced the wave height and wave setup substantially, but rigid vegetation typically performed better in reducing wave setup. For some of the experiments, no wave breaking was observed over the vegetated models, indicating that wave attenuation due to vegetation reduced the shoaling rate. For other experiments, wave breaking was observed and wave height attenuation was very small; however, wave setup was still significantly lower than in the plane beach experiments.


Author(s):  
Derek Eamus ◽  
Alfredo Huete ◽  
Qiang Yu
Keyword(s):  

1983 ◽  
Vol 44 (C9) ◽  
pp. C9-337-C9-340 ◽  
Author(s):  
R. L. Smith ◽  
W. N. Reynolds ◽  
S. Perring

2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


Sign in / Sign up

Export Citation Format

Share Document