scholarly journals Obstacle avoidance strategy for an autonomous surface vessel based on modified deep deterministic policy gradient

2022 ◽  
Vol 243 ◽  
pp. 110166
Author(s):  
Chang Zhou ◽  
Yiting Wang ◽  
Lei Wang ◽  
Huacheng He
2021 ◽  
Vol 9 (3) ◽  
pp. 252
Author(s):  
Yushan Sun ◽  
Xiaokun Luo ◽  
Xiangrui Ran ◽  
Guocheng Zhang

This research aims to solve the safe navigation problem of autonomous underwater vehicles (AUVs) in deep ocean, which is a complex and changeable environment with various mountains. When an AUV reaches the deep sea navigation, it encounters many underwater canyons, and the hard valley walls threaten its safety seriously. To solve the problem on the safe driving of AUV in underwater canyons and address the potential of AUV autonomous obstacle avoidance in uncertain environments, an improved AUV path planning algorithm based on the deep deterministic policy gradient (DDPG) algorithm is proposed in this work. This method refers to an end-to-end path planning algorithm that optimizes the strategy directly. It takes sensor information as input and driving speed and yaw angle as outputs. The path planning algorithm can reach the predetermined target point while avoiding large-scale static obstacles, such as valley walls in the simulated underwater canyon environment, as well as sudden small-scale dynamic obstacles, such as marine life and other vehicles. In addition, this research aims at the multi-objective structure of the obstacle avoidance of path planning, modularized reward function design, and combined artificial potential field method to set continuous rewards. This research also proposes a new algorithm called deep SumTree-deterministic policy gradient algorithm (SumTree-DDPG), which improves the random storage and extraction strategy of DDPG algorithm experience samples. According to the importance of the experience samples, the samples are classified and stored in combination with the SumTree structure, high-quality samples are extracted continuously, and SumTree-DDPG algorithm finally improves the speed of the convergence model. Finally, this research uses Python language to write an underwater canyon simulation environment and builds a deep reinforcement learning simulation platform on a high-performance computer to conduct simulation learning training for AUV. Data simulation verified that the proposed path planning method can guide the under-actuated underwater robot to navigate to the target without colliding with any obstacles. In comparison with the DDPG algorithm, the stability, training’s total reward, and robustness of the improved Sumtree-DDPG algorithm planner in this study are better.


Author(s):  
Tasher Ali Sheikh ◽  
Swacheta Dutta ◽  
Smriti Baruah ◽  
Pooja Sharma ◽  
Sahadev Roy

The concept of path planning and collision avoidance are two of the most common theories applied for designing and developing in advanced autonomous robotics applications. NI LabView makes it possible to implement real-time processor for obstacle avoidance. The obstacle avoidance strategy ensures that the robot whenever senses the obstacle stops without being collided and moves freely when path is free, but sometimes there exists a probability that once the path is found free and the robot starts moving, then within a fraction of milliseconds, the robot again sense the obstacle and it stops. This continuous swing of stop and run within a very small period of time may cause heavy burden on the system leading to malfunctioning of the components of the system. This paper deals with overcoming this drawback in a way that even after the robot calculates the path is free then also it will wait for a specific amount of time before running it. So as to confirm that if again the sensor detects the obstacle within that specified period then robot don’t need to transit its state suddenly thus avoiding continuous transition of run and stop. Thus it reduces the heavy burden on the system.


2020 ◽  
Vol 5 (2) ◽  
pp. 3251-3258 ◽  
Author(s):  
Manuel Boldrer ◽  
Marco Andreetto ◽  
Stefano Divan ◽  
Luigi Palopoli ◽  
Daniele Fontanelli

Author(s):  
Jiaxiong Xu ◽  
Baotong Lu ◽  
Ergang Ma ◽  
Ruina Jin ◽  
Xueheng Cui ◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 172988141989897 ◽  
Author(s):  
Shinan Zhu ◽  
Weiyi Zhu ◽  
Xueqin Zhang ◽  
Tao Cao

Path planning of lunar robots is the guarantee that lunar robots can complete tasks safely and accurately. Aiming at the shortest path and the least energy consumption, an adaptive potential field ant colony algorithm suitable for path planning of lunar robot is proposed to solve the problems of slow convergence speed and easy to fall into local optimum of ant colony algorithm. This algorithm combines the artificial potential field method with ant colony algorithm, introduces the inducement heuristic factor, and adjusts the state transition rule of the ant colony algorithm dynamically, so that the algorithm has higher global search ability and faster convergence speed. After getting the planned path, a dynamic obstacle avoidance strategy is designed according to the predictable and unpredictable obstacles. Especially a geometric method based on moving route is used to detect the unpredictable obstacles and realize the avoidance of dynamic obstacles. The experimental results show that the improved adaptive potential field ant colony algorithm has higher global search ability and faster convergence speed. The designed obstacle avoidance strategy can effectively judge whether there will be collision and take obstacle avoidance measures.


Author(s):  
Yimin Chen ◽  
Chuan Hu ◽  
Yechen Qin ◽  
Mingjun Li ◽  
Xiaolin Song

Obstacle avoidance strategy is important to ensure the driving safety of unmanned ground vehicles. In the presence of static and moving obstacles, it is challenging for the unmanned ground vehicles to plan and track the collision-free paths. This paper proposes an obstacle avoidance strategy consists of the path planning and the robust fuzzy output-feedback control. A path planner is formed to generate the collision-free paths that avoid static and moving obstacles. The quintic polynomial curves are employed for path generation considering computational efficiency and ride comfort. Then, a robust fuzzy output-feedback controller is designed to track the planned paths. The Takagi–Sugeno (T–S) fuzzy modeling technique is utilized to handle the system variables when forming the vehicle dynamic model. The robust output-feedback control approach is used to track the planned paths without using the lateral velocity signal. The proposed obstacle avoidance strategy is validated in CarSim® simulations. The simulation results show the unmanned ground vehicle can avoid the static and moving obstacles by applying the designed path planning and robust fuzzy output-feedback control approaches.


Sign in / Sign up

Export Citation Format

Share Document