A new predictor of extreme events in irregular waves considering interactions of adjacent wave groups

2022 ◽  
Vol 244 ◽  
pp. 110441
Author(s):  
Ruili Fu ◽  
Yuxiang Ma ◽  
Guohai Dong ◽  
Marc Perlin
2001 ◽  
Vol 442 ◽  
pp. 33-66 ◽  
Author(s):  
C. O. G. OHL ◽  
P. H. TAYLOR ◽  
R. EATOCK TAYLOR ◽  
A. G. L. BORTHWICK

Diffraction of irregular waves, focused wave groups, and random seas by an array of vertical bottom-mounted circular cylinders is investigated using theoretical, computational and experimental methods. This is an extension of our study of such an array in regular waves, reported in Part 1. Linear focused wave group theory is reviewed as a method for predicting the probable shape of extreme events from random wave spectra. Measurements are presented of the free surface elevation distribution in the vicinity of a multi-column structure in an offshore basin when subjected to irregular waves having peak frequencies and significant wave heights in the range 0.449 < kpa < 0.555 and 0.114 < Hs < 0.124 respectively, where a is the cylinder radius. Analytical linear diffraction theory is extended for application to focused wave groups and random seas. Experimental irregular wave data are analysed for comparison with this theory. Linear diffraction theory for random seas is shown to give an excellent prediction of incident wave spectral diffraction, while linear diffraction theory for focused wave groups works well for linearized extreme events. Due to the phase shifting of incident wave spectral components, diffraction is shown to generate focused wave groups in the vicinity of the cylinder array.


Author(s):  
O̸ystein Lande ◽  
Thomas B. Johannessen

Analysis of wave structure interaction problems are increasingly handled by employing CFD methods such as the well known Volume-of-Fluid (VoF) method. In particular for the problem of deck impact on fixed structures with slender substructures, CFD methods have been used extensively in the last few years. For this case, the initial conditions have usually been treated as regular waves in an undisturbed wave field which may be given accurately as input. As CFD analyses become more widely available and are used for more complex problems it is also necessary to consider the problem of irregular waves in a CFD context. Irregular waves provide a closer description of the sea surface than regular waves and are also the chief source of statistical variability in the wave induced loading level. In general, it is not feasible to run a long simulation of an irregular seastate in a CFD analysis today since this would require very long simulation times and also a very large computational domain and sophisticated absorbing boundary conditions to avoid build-up of reflections in the domain. The present paper is concerned with the use of a single transient wave group to represent a large event in an irregular wave group. It is well known that the autocovariance function of the wave spectrum is proportional to the mean shape of a large wave in a Gaussian wave field. The transient nature of such a wave ensures that a relatively small wave is generated at the upwave boundary and dissipated at the downwave boundary compared with the wave in the centre of the domain. Furthermore, a transient wave may be embedded in a random background if it is believed that the random background is important for the load level. The present paper describes the method of generating transient wave groups in a CFD analysis of wave in deck impact. The evolution of transient wave groups is first studied and compared with experimental measurements in order to verify that nonlinear transient waves can be calculated accurately using the present CFD code. Vertical wave induced loads on a large deck is then investigated for different undisturbed wave velocities and deck inundations.


1984 ◽  
Vol 106 (4) ◽  
pp. 419-425 ◽  
Author(s):  
S. K. Chakrabarti ◽  
D. C. Cotter

A semisubmersible moored in waves experiences a steady offset and two types of motion—a first-order motion at frequencies corresponding to the incident wave frequencies and a slowly oscillating motion near the natural frequency of the semisubmersible/mooring system. An extensive wave tank testing of a semisubmersible model was undertaken in which the motions of the semisubmersible and the loads in the mooring lines were measured. The semisubmersible was tested in the tank in a head sea as well as a beam sea heading in a series of regular waves, regular wave groups and irregular waves. The test results of the steady offset and first-order and slowly oscillating motions are presented for each heading and for each of these wave series as functions of the wave period. The experimental results are correlated with theoretical results based on a 3-D diffraction theory which takes into account the appropriate first and second-order terms. It is found that the nonlinear damping terms are quite important in explaining the behavior of the moored semisubmersible in waves and that the steady drift loads in wave groups can be determined from results based on regular waves.


Author(s):  
Christian Schmittner ◽  
Joris Brouwer ◽  
Janou Hennig

For hydrodynamic model testing different types of model waves are applied, where the most common ones are regular (monochromatic) and irregular (multichromatic) waves. In addition to these wave types the application of focusing wave groups, which are also often denoted as wave packages or transient wave packets, can give insight into aspects that cannot be assessed by the conventional model waves. This paper describes the different applications of focusing wave groups for hydrodynamic model testing. The paper starts with the historical background, followed by a theoretical description and the generation procedure. The main part of the paper is dedicated to the practical application of focusing wave groups in the basin. Items that will be described are a) the derivation of transfer functions for floating structures and for anti-roll tanks b) the determination of hydraulic and electrical transfer function of wave makers c) the verification of position and calibration of wave probes in the basin d) the generation of extreme wave events e) the assessment of reflection coefficient of beaches f) the investigation of non-linear aspects of transfer functions. Finally, characteristics of the analysis of focusing waves are introduced and compared to conventional methods based on regular and irregular waves.


1978 ◽  
Vol 1 (16) ◽  
pp. 140
Author(s):  
A.I. Kuznetsov ◽  
G.D. Khaskhatchikh

At the present time sea wave is described by means of two theoretical models, the first is based on regular waves, components of which do not change in time and space, and the second model is based on irregular waves, components of which are randomly changed. The latter coincides to the greater extent with the rolling sea, but even this model does not characterize it to the full» Taking sea wave for a random process, the model of irregular waves does not take into account the sequence of their alternation. Prom the point of view of probability, on which the model of irregular waves is based, the maximum wave may be followed by the minimum wave, and the greater period may be followed by the smallest one. The real sea wave, especially in shore zone, where the main engineering constructions are placed, is characterized by clearly expressed group structure, which includes alternation of a number of great and small waves and the maximum wave is always followed by the wave having almost the same parameters.


Author(s):  
Lisa Minnick ◽  
Christopher Bassler ◽  
Scott Percival ◽  
Lauren Hanyok

An experiment was performed to measure and characterize wave kinematics in an experimental basin. The experiment is part of an ongoing effort to improve predictions and measurements of ship motions in waves, including more accurate characterization of the near-field wave environment and its influence on ship motions. The primary objective of this experiment was to measure and characterize the wave kinematics of regular waves of varying steepness and scaled irregular seaways, including irregular waves with embedded wave groups. Measurements, including free-surface elevations and velocity field measurements under the free surface, are presented and discussed.


Author(s):  
Joseph Brennan ◽  
Frédéric Dias

Presented here is a study on the nonlinear effects contributing to extreme events in wave fields characterised by the presence of two distinct spectral peaks, otherwise known as crossing sea states. Simulations based within the framework of the nonlinear Schrödinger equation have shown that the coupling of two wave groups impinging at various angles strongly influences the growth rate of the Benjamin Feir instability, with various angles enhancing the instability and the characteristics of the rogue event itself. This investigation is based on the more general framework of the Euler equations, employing a Higher Order Spectral Method (HOSM) to numerically solve these equations and obtain the time evolution of the crossing sea state.


Sign in / Sign up

Export Citation Format

Share Document