The impacts over time of marine protected areas: A null model

2011 ◽  
Vol 54 (4) ◽  
pp. 312-317 ◽  
Author(s):  
William Silvert ◽  
Aristides Moustakas
2019 ◽  
Author(s):  
RAFAEL Almeida MAGRIS ◽  
Martinho Marta-Almeida ◽  
Jose Alberto Monteiro ◽  
Natalie Ban

Analysis that link hydrological processes with oceanographic dispersion offer a promising approach for assessing impacts of land-based activities on marine ecosystems. However, such an analysis has not yet been customised to quantify specific pressures from mining activities on marine biodiversity including those from spillages resulting from tailing dam failure. Here, using a Brazilian catchment in which a tailing dam collapsed (Doce river) as a case study, we provide a modelling approach to assess the impacts on key ecosystems and marine protected areas subjected to two exposure regimes: (i) a pulse disturbance event for the period 2015-2016, following the immediate release of sediments after dam burst, which witnessed an average increase of 88% in sediment exports; and (ii) a press disturbance phase for the period 2017-2029, when impacts are sustained over time by sediments along the river’s course. We integrated four components into impact assessments: hydrological modelling, coastal-circulation modelling, ecosystem mapping, and biological sensitivities. The results showed that pulse disturbance causes sharp increases in the amount of sediments entering the coastal area, exposing key sensitive ecosystems to pollution (e.g. rhodolith beds), highlighting an urgent need for developing restoration strategies for these areas. The intensity of impacts will diminish over time but the total area of sensitive ecosystems at risk are predicted to be enlarged. We determined monitoring and restoration priorities by evaluating and comparing the extent to which sensitive ecosystems within marine protected areas were exposed to disturbances. The information obtained in this study will allow the optimization of recovery efforts in the marine area affected, and valuation of ecosystem services lost.


2018 ◽  
Author(s):  
RAFAEL Almeida MAGRIS ◽  
Robert L. Pressey

Several countries, including Brazil, are making compelling case for historical progress towards achieving the targets for marine protection under the Convention on Biological Diversity. However, this can be done through the establishment of large marine protected areas (MPAs) in the open ocean, a conservation strategy that might be only tangential to the core ecological goal of MPA designation, i.e. biodiversity conservation. By using two newly-designated large MPAs in Brazil as an example, we outline three ways in which they indicate poor adherence to best practices in MPA planning: placing no-take MPAs in areas with limited potential for extractive uses, neglecting the need to account for spatial dependencies among areas to maintain populations over time, and the inadequacy of the MPAs to regulate fishing of mobile pelagic species.


Web Ecology ◽  
2016 ◽  
Vol 16 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Aristides Moustakas

Abstract. Protected areas are an important conservation measure. However, there are controversial findings regarding whether closed areas are beneficial for species and habitat conservation as well as for harvesting. Species dispersal is acknowledged as a key factor for the design and impacts of protected areas. A series of agent-based models using random diffusion to model fish dispersal were run before and after habitat protection. All results were normalized without the protected habitat in each scenario to detect the relative difference after protecting an area, all else being equal. Model outputs were compared with published data regarding the impacts over time of MPAs on fish biomass. In addition, data on species' dispersal potential in terms of kilometres per year are compared with model outputs. Results show that fish landings of species with short dispersal rates will take longer to reach the levels from before the Marine Protected Areas (MPAs) were established than landings of species with long dispersal rates. Further, the establishment of an MPA generates a higher relative population source within the MPA for species with low dispersal abilities than for species with high dispersal abilities. Results derived here show that there exists a feasible win-win scenario that maximizes both fish biomass and fish catches.


2016 ◽  
Vol 548 ◽  
pp. 263-275 ◽  
Author(s):  
RE Lindsay ◽  
R Constantine ◽  
J Robbins ◽  
DK Mattila ◽  
A Tagarino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document