scholarly journals How can Automatic Identification System (AIS) data be used for maritime spatial planning?

2018 ◽  
Vol 166 ◽  
pp. 18-30 ◽  
Author(s):  
M. Le Tixerant ◽  
D. Le Guyader ◽  
F. Gourmelon ◽  
B. Queffelec
2018 ◽  
Author(s):  
Matthieu Le Tixerant ◽  
Damien Le Guyader ◽  
Françoise Gourmelon ◽  
Betty Queffelec

Although the importance of Maritime Spatial Planning (MSP) as a concept is know acknowledged and the legal framework is in place, the task of applying it remains a delicate one. One of the keys to success is having pertinent data. Knowing how maritime uses unfold in a spatio-temporal context, and what conflicting or synergistic interactions exist between activities, is crucial. However, this information is especially hard to obtain in a marine environment. As a result this information has often been identified as the missing layer in information systems developed by maritime stakeholders. Since 2002, the Automatic Identification System (AIS) has been undergoing a major development. Allowing for real time geo-tracking and identification for equipped vessels, the data that issues from AIS data promises to map and describe certain marine human activities.After recapitulating the main characteristics of AIS and the data it provides, this article proposes to evaluate how AIS is currently used in MSP at a European level, and to concisely present a series of methods and results obtained within the framework of several operational research projects. The objective is to illustrate how the AIS data processing and analysis can produce adequate information for MSP: maritime traffic density, shipping lanes and navigation flows, hierarchical network of maritime routes, alleged fishing zones, spatio-temporal interactions between activities (potential conflicting uses or synergies). The conclusion looks in particular at the legal questions concerning the use of AIS.


2017 ◽  
Vol 30 ◽  
pp. 39 ◽  
Author(s):  
Damien Le Guyader ◽  
Cyril Ray ◽  
Françoise Gourmelon ◽  
David Brosset

High resolution estimates of bottom towed fishing gears are needed to provide relevant information for natural resource management, impact assessment and maritime spatial planning. The use of satellite-based vessel monitoring system (VMS) data is constrained by data access restrictions as well as rather coarse data resolution. This study focuses on mapping dredge gear fishing grounds using fishing effort estimates at the métier level based on automatic identification system (AIS) data. The performance of the approach was evaluated in terms of correct discrimination between fishing and non-fishing activities for known fishing positions as well as appropriate error propagation. The test was conducted in the Bay of Brest (France) in partnership with a committee of local fishers. The results identified dredge fishing grounds for great scallop (Pecten maximus) in the western part of the Bay of Brest and provided high-resolution information for scientists and local decision makers on the spatial and temporal seasonal variability of fishing effort. The proposed method is semi-automatic and generic making it suitable for other applications.


Author(s):  
Febus Reidj G. Cruz ◽  
Jeremiah A. Ordiales ◽  
Malvin Angelo C. Reyes ◽  
Pinky T. Salvanera

2021 ◽  
pp. 1-22
Author(s):  
Lei Jinyu ◽  
Liu Lei ◽  
Chu Xiumin ◽  
He Wei ◽  
Liu Xinglong ◽  
...  

Abstract The ship safety domain plays a significant role in collision risk assessment. However, few studies take the practical considerations of implementing this method in the vicinity of bridge-waters into account. Therefore, historical automatic identification system data is utilised to construct and analyse ship domains considering ship–ship and ship–bridge collisions. A method for determining the closest boundary is proposed, and the boundary of the ship domain is fitted by the least squares method. The ship domains near bridge-waters are constructed as ellipse models, the characteristics of which are discussed. Novel fuzzy quaternion ship domain models are established respectively for inland ships and bridge piers, which would assist in the construction of a risk quantification model and the calculation of a grid ship collision index. A case study is carried out on the multi-bridge waterway of the Yangtze River in Wuhan, China. The results show that the size of the ship domain is highly correlated with the ship's speed and length, and analysis of collision risk can reflect the real situation near bridge-waters, which is helpful to demonstrate the application of the ship domain in quantifying the collision risk and to characterise the collision risk distribution near bridge-waters.


Sign in / Sign up

Export Citation Format

Share Document