Propagation and power flow of high-order three-Airy beams

2017 ◽  
Vol 405 ◽  
pp. 120-126 ◽  
Author(s):  
Yi Liang ◽  
Yingkang Chen ◽  
Lingyu Wan
Keyword(s):  
2016 ◽  
Vol 10 (8) ◽  
pp. 1853-1859 ◽  
Author(s):  
Sayed Yaser Derakhshandeh ◽  
Rohallah Pourbagher
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3520 ◽  
Author(s):  
Hang Li ◽  
Zhe Zhang ◽  
Xianggen Yin

Because the penetration level of renewable energy sources has increased rapidly in recent years, uncertainty in power system operation is gradually increasing. As an efficient tool for power system analysis under uncertainty, probabilistic power flow (PPF) is becoming increasingly important. The point-estimate method (PEM) is a well-known PPF algorithm. However, two significant defects limit the practical use of this method. One is that the PEM struggles to estimate high-order moments accurately; this defect makes it difficult for the PEM to describe the distribution of non-Gaussian output random variables (ORVs). The other is that the calculation burden is strongly related to the scale of input random variables (IRVs), which makes the PEM difficult to use in large-scale power systems. A novel approach based on principal component analysis (PCA) and high-dimensional model representation (HDMR) is proposed here to overcome the defects of the traditional PEM. PCA is applied to decrease the dimension scale of IRVs and eliminate correlations. HDMR is applied to estimate the moments of ORVs. Because HDMR considers the cooperative effects of IRVs, it has a significantly smaller estimation error for high-order moments in particular. Case studies show that the proposed method can achieve a better performance in terms of accuracy and efficiency than traditional PEM.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2019
Author(s):  
Talal Alharbi ◽  
Marcos Tostado-Véliz ◽  
Omar Alrumayh ◽  
Francisco Jurado

Recently, the high-order Newton-like methods have gained popularity for solving power flow problems due to their simplicity, versatility and, in some cases, efficiency. In this context, recent research studied the applicability of the 4th order Jarrat’s method as applied to power flow calculation (PFC). Despite the 4th order of convergence of this technique, it is not competitive with the conventional solvers due to its very high computational cost. This paper addresses this issue by proposing two efficient modifications of the 4th order Jarrat’s method, which present the fourth and sixth order of convergence. In addition, continuous versions of the new proposals and the 4th order Jarrat’s method extend their applicability to ill-conditioned cases. Extensive results in multiple realistic power networks serve to sow the performance of the developed solvers. Results obtained in both well and ill-conditioned cases are promising.


Author(s):  
Y. Ishida ◽  
H. Ishida ◽  
K. Kohra ◽  
H. Ichinose

IntroductionA simple and accurate technique to determine the Burgers vector of a dislocation has become feasible with the advent of HVEM. The conventional image vanishing technique(1) using Bragg conditions with the diffraction vector perpendicular to the Burgers vector suffers from various drawbacks; The dislocation image appears even when the g.b = 0 criterion is satisfied, if the edge component of the dislocation is large. On the other hand, the image disappears for certain high order diffractions even when g.b ≠ 0. Furthermore, the determination of the magnitude of the Burgers vector is not easy with the criterion. Recent image simulation technique is free from the ambiguities but require too many parameters for the computation. The weak-beam “fringe counting” technique investigated in the present study is immune from the problems. Even the magnitude of the Burgers vector is determined from the number of the terminating thickness fringes at the exit of the dislocation in wedge shaped foil surfaces.


Author(s):  
C. M. Sung ◽  
D. B. Williams

Researchers have tended to use high symmetry zone axes (e.g. <111> <114>) for High Order Laue Zone (HOLZ) line analysis since Jones et al reported the origin of HOLZ lines and described some of their applications. But it is not always easy to find HOLZ lines from a specific high symmetry zone axis during microscope operation, especially from second phases on a scale of tens of nanometers. Therefore it would be very convenient if we can use HOLZ lines from low symmetry zone axes and simulate these patterns in order to measure lattice parameter changes through HOLZ line shifts. HOLZ patterns of high index low symmetry zone axes are shown in Fig. 1, which were obtained from pure Al at -186°C using a double tilt cooling holder. Their corresponding simulated HOLZ line patterns are shown along with ten other low symmetry orientations in Fig. 2. The simulations were based upon kinematical diffraction conditions.


Sign in / Sign up

Export Citation Format

Share Document