Rapid characterization of nano-scale structures in large-scale ultra-precision surfaces

2020 ◽  
Vol 134 ◽  
pp. 106200
Author(s):  
Wenjun Yang ◽  
Xiaojun Liu ◽  
Chi Hu ◽  
Wenlong Lu ◽  
Cheng Chen ◽  
...  
2013 ◽  
Vol 62 (1-6) ◽  
pp. 124-126 ◽  
Author(s):  
Hong-Yu Niu ◽  
Wan-Hui Ye ◽  
Zheng-Feng Wang ◽  
Ying Chen ◽  
Hong-Lin Cao ◽  
...  

Abstract Schima superba is a common dominant tree species in evergreen broad-leaved forest in subtropical China. Despite its multiple usages in wood industry, reforestation and traditional Chinese medicine, its genetic diversity is poorly studied. To help studying its genetic diversity and structure in the future, after microsatellite enrichment and screening, we identified 16 microsatellites in S. superba. These markers showed polymorphism in three populations. The number of alleles per locus ranged from 3 to 32 with a mean of 14. Within populations, the observed and unbiased expected heterozygosities ranged from 0.048 to 0.926 and from 0.048 to 0.949, respectively. The newly developed 16 microsatellites will be useful for investigating the genetic diversity and structure from large scale patterns to fine-scale structures in this species.


2021 ◽  
Author(s):  
Abrar Aljahani ◽  
Peng Hua ◽  
Magdalena A. Karpinska ◽  
Kimberly Quililan ◽  
James O. J. Davies ◽  
...  

Enhancers and promoters predominantly interact within large-scale topologically associating domains (TADs), which are formed by loop extrusion mediated by cohesin and CTCF. However, it is unclear whether complex chromatin structures exist at sub-kilobase-scale and to what extent fine-scale regulatory interactions depend on loop extrusion. To address these questions, we present an MNase-based chromosome conformation capture (3C) approach, which has enabled us to generate the most detailed local interaction data to date and precisely investigate the effects of cohesin and CTCF depletion on chromatin architecture. Our data reveal that cis-regulatory elements have distinct internal nano-scale structures, within which local insulation is dependent on CTCF, but which are independent of cohesin. In contrast, we find that depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Together, our data show that loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression.


2014 ◽  
Vol 10 (S309) ◽  
pp. 303-303
Author(s):  
A. Camps-Fariña ◽  
J. Beckman ◽  
J. Zaragoza-Cardiel ◽  
J. Font ◽  
K. Fathi

AbstractWe present a new method for the detection and characterization of large scale expansion in galaxy discs based on Hα Fabry-Perot spectroscopy, taking advantage of the high spatial and velocity resolution of our instrument (GHαFaS). The method analyses multi-peaked emission line profiles to find expansion along the line of sight on a pixel-by-pixel basis. At this stage we have centred our attention on the large scale structures of expansive gas which show a coherent gradient of velocities from their centres as a result of both bubble shape and projection effect. The results show a wide range of expansion velocities in these superbubbles, ranging from 30-150 km/s, with the expected trend of finding the higher velocities in the more violent areas of the galaxies. We have applied the technique to the Antennae and M83, obtaining spectacular results, and used these to investigate to what extent kinematically derived ages can be found and used to characterize the ages of their massive star clusters.


2012 ◽  
Vol 12 ◽  
pp. 280-289
Author(s):  
CHIARA FERRARI

The existence of cosmic rays and weak magnetic fields in the intracluster volume has been well proven by deep radio observations of galaxy clusters. However a detailed physical characterization of the non-thermal component of large scale-structures, relevant for high-precision cosmology, is still missing. I will show the importance of combining numerical and theoretical works with cluster observations by a new-generation of radio, Gamma- and X-ray instruments.


2021 ◽  
Author(s):  
Di Wu ◽  
Philsang Hwang ◽  
Tiansen Li ◽  
Grzegorz Piszczek

AbstractRecombinant adeno-associated viruses (rAAV) are extensively used as gene delivery vectors in clinical studies, and several rAAV based treatments have already been approved. Significant progress has been made in rAAV manufacturing, and large-scale vector production and purification methods have been developed. However, a better and more precise capsid characterization techniques are still needed to guarantee the purity and safety of the rAAV preparations. A recently developed single-molecule technique, mass photometry (MP), measures mass distributions of biomolecules with high resolution and sensitivity. Here we explore applications of MP for the characterization of capsid fractions. We demonstrate that MP is able to resolve and quantify not only empty and full-genome containing capsid populations, but also identify the partially packaged capsid impurities. MP data accurately measures full and empty capsid ratios, and can be used to estimate the size of the encapsidated genome. MP distributions provide information on sample heterogeneity and on the presence of aggregates. Current analytical techniques used to characterize rAAV preparations are susceptible to background signals, have limited accuracy, or are time-consuming and require a large amount of material. MP can analyze sub-picomole quantities of sample, and data can be obtained and analyzed within minutes. This method provides a simple, robust, and effective tool to monitor physical attributes of rAAV vectors.


AIAA Journal ◽  
1987 ◽  
Vol 25 (9) ◽  
pp. 1164-1170 ◽  
Author(s):  
K. C. Schadow ◽  
K. J. Wilson ◽  
E. Gutmark

1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Sign in / Sign up

Export Citation Format

Share Document