Comparison of bead shape, microstructure and mechanical properties of fiber laser beam welding of 2 mm thick plates of Ti-6Al-4V alloy

2018 ◽  
Vol 105 ◽  
pp. 306-321 ◽  
Author(s):  
Chandan Kumar ◽  
Manas Das ◽  
C.P. Paul ◽  
K.S. Bindra
2016 ◽  
Vol 70 (7) ◽  
pp. 1817-1825 ◽  
Author(s):  
Santosh Kumar Sahoo ◽  
Bibhudutta Bishoyi ◽  
Upendra Kumar Mohanty ◽  
Sushant Kumar Sahoo ◽  
Jambeswar Sahu ◽  
...  

2016 ◽  
Vol 879 ◽  
pp. 903-908 ◽  
Author(s):  
Nikolai Kashaev ◽  
Dmitry Pugachev ◽  
Stefan Riekehr ◽  
Volker Ventzke

The present work investigates the effects of laser beam power, focus position and advance speed on the geometry, microstructure and mechanical properties of fiber laser beam welded Ti-6Al-2Sn-4Zr-2Mo (denoted as Ti-6242) butt joints used for high temperature applications. Detailed microstructural and mechanical studies were performed on welds produced using optimized parameters (a laser beam power of 5 kW, a focus position of 0.0 mm and an advance speed of 6.2 m/min). The Ti-6242 base material is characterized by a globular (α+β) microstructure. The heat input during laser beam welding led to the formation of a martensitic α’-phase fusion zone. The heat affected zone consisted of globular grains and acicular crystallites. These local transformations were connected with a change in the micro-texture, average grain size and β-phase content. Furthermore, the microhardness increased from 330 HV 0.3 to 450 HV 0.3 due to the martensitic transformation. The mechanical behavior of the laser beam welded Ti-6242 butt joint loaded in tension was determined by the properties of the Ti-6242 base material. The local increase in hardness provided a shielding effect that protected the Ti-6242 butt joint against mechanical damage.


2015 ◽  
Vol 787 ◽  
pp. 475-479
Author(s):  
K.L. Hari Krishna ◽  
S.R. Koteswara Rao ◽  
V.V. Subba Rao

Present work pertains to welding of ZM21 magnesium alloy using three different welding techniques namely Gas Tungsten Arc Welding, Laser Beam Welding and Friction Stir Welding. After careful trial and error method, the process parameters were identified to produce defect free, full penetration welds successfully. The microstructure and mechanical properties of ZM21 magnesium alloy using GTAW, LBW and FSW processes were analyzed by optical microscopy, tensile testing and Vickers micro hardness measurements. The results show that the tensile properties of Friction stir welds and Laser beam welds are much better than those of gas tungsten arc welds. The formation of very fine grains in the friction stir welded region and absence of HAZ in LBW are found to be main reasons for better tensile properties. It has been concluded that the ZM21 magnesium alloy exhibits good weldability in all the three welding processes and laser beam welding process offers higher joint efficiency when compared with GTAW and FSW.


2008 ◽  
Author(s):  
Steffen Mueller ◽  
Craig Bratt ◽  
Peter Mueller ◽  
Jonathan Cuddy ◽  
Kartik Shankar

Sign in / Sign up

Export Citation Format

Share Document