Optical trajectory transport device based on a three-core fiber

2021 ◽  
Vol 140 ◽  
pp. 107076
Author(s):  
Xiaotong Zhang ◽  
Tingting Yuan ◽  
Shitai Yang ◽  
Jun Yang ◽  
Libo Yuan
Keyword(s):  
2011 ◽  
Vol 131 (9) ◽  
pp. 608-610
Author(s):  
Yasuo KOKUBUN ◽  
Masanori KOSHIBA
Keyword(s):  

2018 ◽  
Vol 138 (12) ◽  
pp. 525-532
Author(s):  
Masahiko Ito ◽  
Yuya Koyama ◽  
Michiko Nishiyama ◽  
Emi Yanagisawa ◽  
Mariko Hayashi ◽  
...  

2021 ◽  
Vol 483 ◽  
pp. 126617
Author(s):  
Yan Zhou ◽  
Yu Wang ◽  
Huabei Liu ◽  
Jinling Chen ◽  
Peipei Yang ◽  
...  
Keyword(s):  

2020 ◽  
Vol 117 (19) ◽  
pp. 191101
Author(s):  
Wenpu Geng ◽  
Yiqiao Li ◽  
Yuxi Fang ◽  
Yingning Wang ◽  
Changjing Bao ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pablo Roldán-Varona ◽  
Rosa Ana Pérez-Herrera ◽  
Luis Rodríguez-Cobo ◽  
Luis Reyes-González ◽  
Manuel López-Amo ◽  
...  

AbstractIn this work, a novel optical fiber sensor capable of measuring both the liquid level and its refractive index is designed, manufactured and demonstrated through simulations and experimentally. For this, a silica capillary hollow-core fiber is used. The fiber, with a sensing length of 1.55 mm, has been processed with a femtosecond laser, so that it incorporates four holes in its structure. In this way, the liquid enters the air core, and it is possible to perform the sensing through the Fabry–Perot cavities that the liquid generates. The detection mode is in reflection. With a resolution of 4 μm (liquid level), it is in the state of the art of this type of sensor. The system is designed so that in the future it will be capable of measuring the level of immiscible liquids, that is, liquids that form stratified layers. It can be useful to determine the presence of impurities in tanks.


Sign in / Sign up

Export Citation Format

Share Document