A novel strip-slot-strip waveguide with extremely high dispersion and large bandwidth using cascaded resonant coupling

2021 ◽  
Vol 140 ◽  
pp. 107091
Author(s):  
Shixiu Wei
1996 ◽  
Vol 160 ◽  
pp. 13-14 ◽  
Author(s):  
M. Kramer ◽  
A. Jessner ◽  
P. Müller ◽  
R. Wielebinski

The majority of known pulsars have been discovered by pulsar searches at low radio frequencies (v< 1 GHz). However, such searches are subject to various deleterious effects, viz the Galactic background radiation (∝v−2.8), dispersion smearing (∝v−3) and also scatter broadening (∝v−4.4). Dispersion smearing and, in particular, scatter broadening prohibit the detection of pulsars with high dispersion measures at low frequencies (cf. Fig. 1a). This is highlighted by the fact that all 11 known pulsars with DM>600 cm−3pc have been discovered during the only two surveys performed to date above 1 GHz, i.e. at 1.4 GHz by Clifton et al. (1992) and at 1.5 GHz by Johnston et al. (1992). However, scattering is still a limiting factor at even 1.4/1.5 GHz. For example B1750—24 is observed with a double component profile at 4.85 GHz (Kijak et al. 1996), whereas at 1.4 GHz the components are completely smeared out due to scatter broadening (cf. Clifton et al. 1992). Therefore, the galactic population of highly dispersed pulsars is still not known. In order to reveal this hidden sample, we have recently started a search in Effelsberg at 4.85 GHz where limitations due to scattering are essentially not existent (see Fig. 1a). The use of this extraordinary high frequency for pulsar searches enables us to observe with a large bandwidth but a small number of filterbank channels, so that the necessary computer power is radically reduced. However, the general steepness of pulsar spectra demands a highly sensitive observing system, otherwise, only the most luminous sources can be detected. A serious disadvantage of a high frequency search is the small telescope beam requiring a lot of observing time to search even a small area of the sky. A restriction of the search area is therefore highly recommended.


1988 ◽  
Vol 132 ◽  
pp. 525-530
Author(s):  
Raffaele G. Gratton

The use CCD detectors has allowed a major progress in abundance derivations for globular cluster stars in the last years. Abundances deduced from high dispersion spectra now correlates well with other abundance indicators. I discuss some problems concerning the derivation of accurate metal abundances for globular clusters using high dispersion spectra from both the old photographic and the most recent CCD data. The discrepant low abundances found by Cohen (1980), from photographic material for M71 giants, are found to be due to the use of too high microturbulences.


1965 ◽  
Vol 5 ◽  
pp. 109-111
Author(s):  
Frederick R. West

There are certain visual double stars which, when close to a node of their relative orbit, should have enough radial velocity difference (10-20 km/s) that the spectra of the two component stars will appear resolved on high-dispersion spectrograms (5 Å/mm or less) obtainable by use of modern coudé and solar spectrographs on bright stars. Both star images are then recorded simultaneously on the spectrograph slit, so that two stellar components will appear on each spectrogram.


Author(s):  
Jin Xu ◽  
Yuting Zhao

Background: Detuning is the main problem that affects the efficiency and transmission distance of the resonant coupling Wireless Power Transmission (WPT). The distance of load and the offset of the load position could cause serious detuning. Methods: This paper presents an adjustable coil in which inductance can be adjusted. Then a model of WPT was established that could compensate resonant frequency automatically using the adjustable coil. Next, the relationship between the primary resonant frequency and the transmission efficiency is analyzed from the circuit. The analysis proved that the design of the adjustable coil could improve the transmission efficiency of the WPT system. Finally, a prototype of WPT system was built. Results: The experimental results showed that WPT system with adjustable coil can improve the transmission efficiency which proves the theoretical research. At the same time, it has essential reference value for the future research of WPT. Conclusion: In this paper, aiming at the system detuning caused by some other factors, such as the position shift of the load during the wireless power transmission, an adjustable coil is proposed.


Author(s):  
Usman Illahi ◽  
Javed Iqbal ◽  
Muhammad Ismail Sulaiman ◽  
Muhammad Alam ◽  
Mazliham Mohd Su'ud

<p>A novel technique of multiplexing called Tributary Mapping Multiplexing (TMM) is<br />applied to a single channel wavelength division multiplexing system and performance is monitored on the basis of simulation results. To elaborate the performance of TMM in this paper, a 4-User TMM system over single wavelength channel is demonstrated. TMM showed significant tolerance against narrow optical filtering as compared to that of conventional TDM at the rate of 40 Gbit/s. The above calculations are made by optical filter bandwidth and dispersion tolerance that was allowed at minimum. The spectral efficiency achieved by this TMM was 1 b/s/Hz and it was executed by using transmitters and receivers of 10 Gbit/s without polarized multiplexing. The high spectral efficiency, high dispersion tolerance and tolerance against strong optical filtering makes TMM an efficient technique for High<br />Speed Fiber Optic Communication.</p>


Sign in / Sign up

Export Citation Format

Share Document