Early Cretaceous magma flare-up and its implications on gold mineralization in the Jiaodong Peninsula, China

2015 ◽  
Vol 65 ◽  
pp. 626-642 ◽  
Author(s):  
Qiong-Yan Yang ◽  
M. Santosh
Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
YaYun Liang ◽  
Wenhui Guo ◽  
Yao Ma ◽  
Enquan Zhao

Abstract The eastern North China Craton (NCC) has been recognised as undergoing cratonic destruction during the Mesozoic; however, the mechanism of its destruction is still unclear. The main difference between the proposed models is whether the lower continental crust (LCC) underwent thinning. In this study, we conducted comprehensive analyses of Late Mesozoic felsic intrusive rocks, including Late Jurassic granites (166–146 Ma), Early Cretaceous granodiorites (136–123 Ma), and latest Early Cretaceous granites (123–108 Ma) from the Jiaodong Peninsula, located on the southeastern margin of the NCC. These rocks allowed us to investigate variations in the LCC thickness in this region and to further discuss the destruction mechanism of the eastern NCC. Here, temporal variations in crustal thickness can be tracked using whole-rock La/Yb ratios of the felsic intrusive rocks. Our study shows that the continental crust in the eastern NCC thickened during the Late Jurassic (>40 km) due to compression and the westward subduction of the Palaeo-Pacific Ocean lithosphere beneath the NCC since the Early Jurassic. The continental crust further thickened during the Early Cretaceous, caused by the steepening of the subducting slab after ~144 Ma that produced crustal underplating of mantle-derived melts in an extensional setting. However, the continental crust thinned (20–40 km) during the latest Early Cretaceous, caused by the rollback of the subducting slab after ~123 Ma. The geochemical compositions of three stages of felsic intrusions also suggest that the regional tectonic stress that affects the eastern NCC altered from a compressional to an intraplate extensional environment after ~144 Ma. Thus, the Late Mesozoic destruction of the eastern NCC and its accompanying magmatism were controlled by prolonged thermomechanical-chemical erosion due to low-angle subduction, steepening, and rollback of the Palaeo-Pacific Oceanic lithosphere.


2019 ◽  
Vol 157 (3) ◽  
pp. 435-457
Author(s):  
Zhenshan Pang ◽  
Fuping Gao ◽  
Yangsong Du ◽  
Yilun Du ◽  
Zhaojian Zong ◽  
...  

AbstractThe Xiong’ershan area is the third largest gold-producing district in China. The Late Jurassic to Early Cretaceous magmatism in the Xiong’ershan area can be divided into two episodes: early (165–150 Ma) and late (138–113 Ma). Laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) zircon U–Pb dating yields ages of 160.7 ± 0.6 Ma and 127.2 ± 1.0 Ma for the Wuzhangshan and Huashan monzogranites in the Xiong’ershan area, respectively, representing the two magmatic episodes. The Wuzhangshan monzogranites exhibit adakite-like geochemical features (e.g. high Sr/Y ratios, low Yb and Y contents). Their Sr–Nd–Hf isotopic compositions are consistent with those of the amphibolites of the Taihua Group, indicating that the Wuzhangshan monzogranites were formed from partial melting of the Taihua Group metamorphic rocks. Compared to the Wuzhangshan rocks, the Huashan monzogranites have higher MgO, Cr, Co and Ni contents, but lower Sr/Y and Fe3+/Fe2+. All the samples from the Huashan monzogranites plot in the area between the Taihua Group amphibolite rocks and the mantle rocks in the (87Sr/86Sr)t vs εNd(t) and age vs εHf(t) diagrams, suggesting that the Huashan monzogranites were probably generated by mixing of mantle-derived magmas and the Taihua Group metamorphic basement melts. The gold mineralization (136–110 Ma) is coeval with the emplacement of the late-episode magmas, implying that crustal–mantle mixed magma might be a better target for gold mineralization compared to the ancient metamorphic basement melt. The data presented in this study further indicate that the transformation of the lithosphere from thickening to thinning in the Xiong’ershan area probably occurred between ~160 Ma and ~127 Ma, and that the gold mineralization in this area was probably related to lithospheric thinning.


2021 ◽  
Author(s):  
Wei Gao ◽  
Ruizhong Hu ◽  
Albert H. Hofstra ◽  
Qiuli Li ◽  
Jingjing Zhu ◽  
...  

Abstract The Youjiang basin on the southwestern margin of the Yangtze block in southwestern China is the world’s second largest Carlin-type gold province after Nevada, USA. The lack of precise age determinations on gold deposits in this province has hindered understanding of their genesis and relation to the geodynamic setting. Although most Carlin-type gold deposits in the basin are hosted in calcareous sedimentary rocks, ~70% of the ore in the Badu Carlin-type gold deposit is hosted by altered and sulfidized dolerite. Although in most respects Badu is similar to other Carlin-type gold deposits in the province, alteration of the unusual dolerite host produced hydrothermal rutile and monazite that can be dated. Field observations show that gold mineralization is spatially associated with, but temporally later than, dolerite. In situ secondary ion mass spectrometry (SIMS) U-Pb dating on magmatic zircon from the least altered dolerite yielded a robust emplacement age of 212.2 ± 1.9 Ma (2σ, mean square of weighted deviates [MSWD] = 0.55), providing a maximum age constraint on gold mineralization. The U-Th/He ages of detrital zircons from hydrothermally mineralized sedimentary host rocks at Badu and four other Carlin-type gold deposits yielded consistent weighted mean ages of 146 to 130 Ma that record cooling from a temperature over 180° to 200°C and place a lower limit on the age of gold mineralization in the basin. Hydrothermal rutile and monazite that are coeval with gold mineralization have been identified in the mineralized dolerite. Rutile is closely associated with hydrothermal ankerite, sericite, and gold-bearing pyrite. It has high concentrations of W, Fe, V, Cr, and Nb, as well as growth zones that are variably enriched in W, Fe, Nb, and U. Monazite contains primary two-phase fluid inclusions and is intergrown with gold-bearing pyrite and hydrothermal minerals. In situ SIMS U-Pb dating of rutile yielded a Tera-Wasserburg lower intercept age of 141.7 ± 5.8 Ma (2σ, MSWD = 1.04) that is within error of the in situ SIMS Th-Pb age of 143.5 ± 1.4 Ma (2σ, MSWD = 1.5) on monazite. These ages are ~70 m.y. younger than magmatic zircons in the host dolerite and are similar to the aforementioned U-Th/He cooling ages on detrital zircons from hydrothermally mineralized sedimentary host rocks. We, therefore, conclude that the Badu Carlin-type gold deposit formed at ca. 144 Ma. The agreement of the rutile and monazite ages with the U-Th-He cooling ages of Badu and four other Carlin-type gold deposits in the Youjiang basin suggests that ca. 144 Ma is representative of a regional Early Cretaceous Carlin-type hydrothermal event formed during back-arc extension.


2017 ◽  
Vol 88 ◽  
pp. 491-510 ◽  
Author(s):  
Li-Qiang Yang ◽  
Lin-Nan Guo ◽  
Zhong-Liang Wang ◽  
Rong-Xin Zhao ◽  
Ming-Chun Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document