scholarly journals Monitoring abiotic degradation in sinking versus suspended Arctic sea ice algae during a spring ice melt using specific lipid oxidation tracers

2016 ◽  
Vol 98 ◽  
pp. 82-97 ◽  
Author(s):  
Jean-François Rontani ◽  
Simon T. Belt ◽  
Thomas A. Brown ◽  
Rémi Amiraux ◽  
Michel Gosselin ◽  
...  
Author(s):  
AC Kvernvik ◽  
CJM Hoppe ◽  
M Greenacre ◽  
S Verbiest ◽  
JM Wiktor ◽  
...  

2017 ◽  
Vol 585 ◽  
pp. 49-69 ◽  
Author(s):  
V Galindo ◽  
M Gosselin ◽  
J Lavaud ◽  
CJ Mundy ◽  
B Else ◽  
...  

2020 ◽  
Vol 648 ◽  
pp. 95-110 ◽  
Author(s):  
LC Lund-Hansen ◽  
I Hawes ◽  
K Hancke ◽  
N Salmansen ◽  
JR Nielsen ◽  
...  

Ice algae are key contributors to primary production and carbon fixation in the Arctic, and light availability is assumed to limit their growth and productivity. We investigated photo-physiological responses in sea ice algae to increased irradiance during a spring bloom in West Greenland. During a 14 d field experiment, light transmittance through sea ice was manipulated to provide 3 under-ice irradiance regimes: low (0.04), medium (0.08), and high (0.16) transmittances. Chlorophyll a decreased with elevated light availability relative to the control. Maximum dark-adapted photosynthetic efficiency (ΦPSII_max) showed an initially healthy and productive ice algae community (ΦPSII_max > 0.6), with ΦPSII_max decreasing markedly under high-light treatments. This was accompanied by a decrease in the light utilization coefficient (α) and photosynthetic capacity (maximum relative electron transfer rate), and a decrease in the ratio of mono- to polyunsaturated fatty acids. This was partly explained by a corresponding increase of photoprotective pigments (diadinoxanthin and diatoxanthin), and a development of mycosporine-like amino acids as identified from a distinctive spectral absorption peak at 360 nm. After 14 d, in situ fluorescence imaging revealed significant differences in ΦPSII_max between treatments of dark-adapted cells (i.e. those sampled before sunrise and after sunset), during diel cycles, with clear chronic photoinhibition in high and medium treatments. Data demonstrate the high sensitivity of spring-blooming Arctic sea ice algae to elevated irradiance caused by loss of snow cover. The predicted loss of snow cover on landfast ice will negatively impact ice algae, their potential primary production, and nutritional quality for higher trophic levels.


ARCTIC ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 114-117
Author(s):  
Spencer Apollonio

Arctic sea ice algae produce extracellular organic products, which, as bioconditioners of seawater, may stimulate early summer growth of pelagic, under-sea-ice phytoplankton in low light and low temperature conditions. Sea ice algae are inhibited or decline in numbers if prematurely exposed to high light conditions, thereby reducing their ability to produce bioconditioners. As climate change creates an early reduction or removal of snow and sea ice cover, the result may be a decrease in primary phytoplankton production.


2017 ◽  
Vol 122 (9) ◽  
pp. 7466-7487 ◽  
Author(s):  
Giulia Castellani ◽  
Martin Losch ◽  
Benjamin A. Lange ◽  
Hauke Flores

2017 ◽  
Vol 122 (6) ◽  
pp. 1486-1505 ◽  
Author(s):  
Hanna M. Kauko ◽  
Torbjørn Taskjelle ◽  
Philipp Assmy ◽  
Alexey K. Pavlov ◽  
C. J. Mundy ◽  
...  

2019 ◽  
Vol 21 (10) ◽  
pp. 1642-1649 ◽  
Author(s):  
Keyhong Park ◽  
Intae Kim ◽  
Jung-Ok Choi ◽  
Youngju Lee ◽  
Jinyoung Jung ◽  
...  

Dimethyl sulfide (DMS) production in the northern Arctic Ocean has been considered to be minimal because of high sea ice concentration and extremely low productivity.


2019 ◽  
Vol 13 (3) ◽  
pp. 775-793 ◽  
Author(s):  
Carie M. Frantz ◽  
Bonnie Light ◽  
Samuel M. Farley ◽  
Shelly Carpenter ◽  
Ross Lieblappen ◽  
...  

Abstract. Field investigations of the properties of heavily melted “rotten” Arctic sea ice were carried out on shorefast and drifting ice off the coast of Utqiaġvik (formerly Barrow), Alaska, during the melt season. While no formal criteria exist to qualify when ice becomes rotten, the objective of this study was to sample melting ice at the point at which its structural and optical properties are sufficiently advanced beyond the peak of the summer season. Baseline data on the physical (temperature, salinity, density, microstructure) and optical (light scattering) properties of shorefast ice were recorded in May and June 2015. In July of both 2015 and 2017, small boats were used to access drifting rotten ice within ∼32 km of Utqiaġvik. Measurements showed that pore space increased as ice temperature increased (−8 to 0 ∘C), ice salinity decreased (10 to 0 ppt), and bulk density decreased (0.9 to 0.6 g cm−3). Changes in pore space were characterized with thin-section microphotography and X-ray micro-computed tomography in the laboratory. These analyses yielded changes in average brine inclusion number density (which decreased from 32 to 0.01 mm−3), mean pore size (which increased from 80 µm to 3 mm), and total porosity (increased from 0 % to > 45 %) and structural anisotropy (variable, with values of generally less than 0.7). Additionally, light-scattering coefficients of the ice increased from approximately 0.06 to > 0.35 cm−1 as the ice melt progressed. Together, these findings indicate that the properties of Arctic sea ice at the end of melt season are significantly distinct from those of often-studied summertime ice. If such rotten ice were to become more prevalent in a warmer Arctic with longer melt seasons, this could have implications for the exchange of fluid and heat at the ocean surface.


2021 ◽  
Vol 15 (9) ◽  
pp. 4517-4525
Author(s):  
Don Perovich ◽  
Madison Smith ◽  
Bonnie Light ◽  
Melinda Webster

Abstract. On Arctic sea ice, the melt of snow and sea ice generate a summertime flux of fresh water to the upper ocean. The partitioning of this meltwater to storage in melt ponds and deposition in the ocean has consequences for the surface heat budget, the sea ice mass balance, and primary productivity. Synthesizing results from the 1997–1998 SHEBA field experiment, we calculate the sources and sinks of meltwater produced on a multiyear floe during summer melt. The total meltwater input to the system from snowmelt, ice melt, and precipitation from 1 June to 9 August was equivalent to a layer of water 80 cm thick over the ice-covered and open ocean. A total of 85 % of this meltwater was deposited in the ocean, and only 15 % of this meltwater was stored in ponds. The cumulative contributions of meltwater input to the ocean from drainage from the ice surface and bottom melting were roughly equal.


Sign in / Sign up

Export Citation Format

Share Document