scholarly journals Lateral extra-articular reconstruction length changes during weightbearing knee flexion and pivot shift: A simulation study

2019 ◽  
Vol 105 (4) ◽  
pp. 661-667
Author(s):  
Yoann Blache ◽  
Biova Kouevidjin ◽  
Jacques de Guise ◽  
Raphaël Dumas ◽  
Adnan Saithna ◽  
...  
Author(s):  
Christoph Kittl ◽  
James Robinson ◽  
Michael J. Raschke ◽  
Arne Olbrich ◽  
Andre Frank ◽  
...  

Abstract Purpose The purpose of this study was to examine the length change patterns of the native medial structures of the knee and determine the effect on graft length change patterns for different tibial and femoral attachment points for previously described medial reconstructions. Methods Eight cadaveric knee specimens were prepared by removing the skin and subcutaneous fat. The sartorius fascia was divided to allow clear identification of the medial ligamentous structures. Knees were then mounted in a custom-made rig and the quadriceps muscle and the iliotibial tract were loaded, using cables and hanging weights. Threads were mounted between tibial and femoral pins positioned in the anterior, middle, and posterior parts of the attachment sites of the native superficial medial collateral ligament (sMCL) and posterior oblique ligament (POL). Pins were also placed at the attachment sites relating to two commonly used medial reconstructions (Bosworth/Lind and LaPrade). Length changes between the tibiofemoral pin combinations were measured using a rotary encoder as the knee was flexed through an arc of 0–120°. Results With knee flexion, the anterior fibres of the sMCL tightened (increased in length 7.4% ± 2.9%) whilst the posterior fibres slackened (decreased in length 8.3% ± 3.1%). All fibre regions of the POL displayed a uniform lengthening of approximately 25% between 0 and 120° knee flexion. The most isometric tibiofemoral combination was between pins placed representing the middle fibres of the sMCL (Length change = 5.4% ± 2.1% with knee flexion). The simulated sMCL reconstruction that produced the least length change was the Lind/Bosworth reconstruction with the tibial attachment at the insertion of the semitendinosus and the femoral attachment in the posterior part of the native sMCL attachment side (5.4 ± 2.2%). This appeared more isometric than using the attachment positions described for the LaPrade reconstruction (10.0 ± 4.8%). Conclusion The complex behaviour of the native MCL could not be imitated by a single point-to-point combination and surgeons should be aware that small changes in the femoral MCL graft attachment position will significantly effect graft length change patterns. Reconstructing the sMCL with a semitendinosus autograft, left attached distally to its tibial insertion, would appear to have a minimal effect on length change compared to detaching it and using the native tibial attachment site. A POL graft must always be tensioned near extension to avoid capturing the knee or graft failure.


The Knee ◽  
2008 ◽  
Vol 15 (6) ◽  
pp. 467-472 ◽  
Author(s):  
Kengo Harato ◽  
Takeo Nagura ◽  
Hideo Matsumoto ◽  
Toshiro Otani ◽  
Yoshiaki Toyama ◽  
...  

2014 ◽  
Vol 52 (6) ◽  
pp. 511-520 ◽  
Author(s):  
Matthias Graf ◽  
Salomon Diether ◽  
Lazaros Vlachopoulos ◽  
Sandro Fucentese ◽  
Philipp Fürnstahl

2019 ◽  
Vol 47 (7) ◽  
pp. 1645-1653 ◽  
Author(s):  
Willem A. Kernkamp ◽  
Cong Wang ◽  
Changzou Li ◽  
Hai Hu ◽  
Ewoud R.A. van Arkel ◽  
...  

Background: Medial patellofemoral ligament (MPFL) reconstruction is associated with a high rate of complications, including recurrent instability and persistent knee pain. Technical errors are among the primary causes of these complications. Understanding the effect of adjusting patellofemoral attachments on length change patterns may help surgeons to optimize graft placement during MPFL reconstruction and to reduce graft failure rates. Purpose: To determine the in vivo length changes of the MPFL during dynamic, weightbearing motion and to map the isometry of the 3-dimensional wrapping paths from various attachments on the medial femoral epicondyle to the patella. Study Design: Descriptive laboratory study. Methods: Fifteen healthy participants were studied with a combined computed tomography and biplane fluoroscopic imaging technique during a lunge motion (full extension to ~110° of flexion). On the medial femoral epicondyle, 185 attachments were projected, including the anatomic MPFL footprint, which was divided into 5 attachments (central, proximal, distal, posterior, and anterior). The patellar MPFL area was divided into 3 possible attachments (proximal, central, and distal). The length changes of the shortest 3-dimensional wrapping paths of the various patellofemoral combinations were subsequently measured and mapped. Results: For the 3 patellar attachments, the most isometric attachment, with an approximate 4% length change, was located posterior and proximal to the anatomic femoral MPFL attachment, close to the adductor tubercle. Attachments proximal and anterior to the isometric area resulted in increasing lengths with increasing knee flexion, whereas distal and posterior attachments caused decreasing lengths with increasing knee flexion. The anatomic MPFL was tightest in extension, decreased in length until approximately 30° of flexion, and then stayed near isometric for the remainder of the motion. Changing both the femoral and patellar attachments significantly affected the length changes of the anatomic MPFL ( P < .001 for both). Conclusion: The most isometric location for MPFL reconstruction was posterior and proximal to the anatomic femoral MPFL attachment. The anatomic MPFL is a dynamic, anisometric structure that was tight in extension and early flexion and near isometric beyond 30° of flexion. Clinical Relevance: Proximal and anterior MPFL tunnel positioning should be avoided, and the importance of anatomic MPFL reconstruction is underscored with the results found in this study.


2018 ◽  
Vol 46 (14) ◽  
pp. 3391-3399 ◽  
Author(s):  
Timothy A. Burkhart ◽  
Manoj Matthew ◽  
W. Scott McGuffin ◽  
Alexandra Blokker ◽  
David Holdsworth ◽  
...  

Background: Previous research demonstrated that the attachment of the anterolateral ligament (ALL) to the lateral meniscus is stiffer and stronger in its tibial attachment than its femoral attachment. How this relates to anterolateral knee stability and lateral meniscal function is unknown. Hypothesis/Purpose: The hypothesis was that the ALL acts as a peripheral anchor to the lateral meniscus, aiding in anterolateral rotatory stability, and that the inframeniscal fibers of the ALL will provide greater anterolateral rotatory stability because of their greater tensile properties. The purpose was therefore to compare the difference in kinematics of the anterior cruciate ligament (ACL)–deficient knee between the infra- and suprameniscal ALL-sectioned states. Study Design: Controlled laboratory study. Methods: Eight paired fresh-frozen cadaveric knees were tested in a 5–degree of freedom loading jig under the following loading conditions: 5-N·m internal rotation at 15° incremental angles of flexion and combined 5-N·m internal rotation moment, 10-N·m valgus moment, and 88-N anterior translation force representing a pivot shift test at 0°, 15°, and 30° of flexion. The knees were tested under intact, ACL-deficient, and ACL-/ALL-deficient conditions, with the pairs of knees being randomized to either supra- or inframeniscal ALL sectioning. Resultant joint kinematics and tibiofemoral translations were measured and compared with a 2-way mixed repeated measures analysis of variance. Results: Internal rotation increased by 3° after sectioning of the ACL at 0° of knee flexion ( P = .035). At 45° of knee flexion, internal rotation increased significantly by 2° between the ACL-deficient and the ACL-/ALL-deficient conditions ( P = .049). Secondary kinematics of valgus and anterior translation were observed in response to the 5-N·m load after ACL and ALL sectioning. Analysis of the pivot shift showed increases in tibiofemoral translation after sectioning of the ACL, with further translations after sectioning of the ALL. No differences were observed between supra- and inframeniscal ALL sectioning under any of the loading conditions. Conclusion: An injury to the ALL, coexisting with ACL deficiency, results in only minor increases in knee joint patholaxity. No differences in pivot-shift kinematics or tibiofemoral rotations were observed between the supra- and inframeniscal sectioning of the ALL in the ACL-deficient knee Clinical Relevance: Tears of the midbody and/or posterior root attachment of the lateral meniscus are often observed at the time of ACL reconstruction. Increased anterolateral rotatory laxity has been observed in both lateral meniscus– and ALL-deficient states in combination with an ACL injury. While no significant functional relationship was found between the ALL and lateral meniscus, ALL sectioning did result in increased knee joint patholaxity, as demonstrated by composite tibiofemoral rotations.


2020 ◽  
Vol 8 (9_suppl7) ◽  
pp. 2325967120S0053
Author(s):  
Arne Olbrich ◽  
Elmar Herbst ◽  
Christoph Domnick ◽  
Johannes Glasbrenner ◽  
Michael J. Raschke ◽  
...  

Introduction: Aim of the study was to investigate the length changes of the medial structures and related reconstructions. It was assumed that the three fibre sections (anterior/middle/posterior) of the superficial medial collateral ligament (sMCL) have different length change patterns, which cannot be imitated by current reconstructions. Hypotheses: The three fibre sections (anterior/middle/posterior) of the superficial medial collateral ligament (sMCL) cannot be imitated by current reconstructions. Methods: Measurements were made on eight cadaveric knees. The knee joints were clamped in a custom-made open chain extension structure. For this purpose, the portions of the quadriceps and the iliotibial tract were aligned according to their fibre direction and statically loaded using hanging weights. The respective tibial and femoral insertion points of the sMCL anterior/middle/posterior fibres were marked by small pins. Similarly, pins were inserted at the tibial and femoral attachment sites of the posterior oblique ligament (POL). In order to imitate the Lind reconstruction, a pin was additionally inserted on the tibial semitendinosus insertion site. Pin combinations accounting for the anterior/middle/posterior sMCL, the POL, and the Lind reconstruction were connected using a high resistant suture. Then the length change patterns were measured using a rotary encoder from 0-120° knee flexion. Statistical analysis was performed using 2-way repeated-measures ANOVA and a post-hoc Bonferroni correction (p <0.05). Results: The anterior and posterior fibres of the sMCL showed a reciprocal behaviour (p< 0.001). The anterior fibres showed a length reduction (2%) up to a flexion of 20°, followed by an elongation of 5% at 120° flexion, which means that the anterior fibres are tight in knee flexion. Conversely, the posterior fibres of the MCL showed an initial length reduction of 4% at 20° flexion. This was followed by an isometric range (20° - 80°) and a further length reduction of 8% in deep flexion (120°). Thus, the posterior fibres of the MCL were tight in extension. The three parts of the POL showed a constant reduction of 25% between 0° and 120°. The Lind reconstruction with the tibial pin at the semitendinosus insertion site showed similar length changes compared to the sMCL (n.s.). Furthermore, the Lind reconstruction was dependent on the femoral placement of the pins (p <.001). The tibial placement had no significant influence. Conclusion: The anterior portion of the sMCL was tight in flexion, whereas the posterior portion was tight in extension. This reciprocal behavior could not be imitated by a single point to point reconstruction. When surgically applying these reconstructions, special attention should be paid to the femoral insertion.


2020 ◽  
Vol 28 (12) ◽  
pp. 3720-3732 ◽  
Author(s):  
Lukas Willinger ◽  
Shun Shinohara ◽  
Kiron K. Athwal ◽  
Simon Ball ◽  
Andy Williams ◽  
...  

Abstract Purpose To define the length-change patterns of the superficial medial collateral ligament (sMCL), deep MCL (dMCL), and posterior oblique ligament (POL) across knee flexion and with applied anterior and rotational loads, and to relate these findings to their functions in knee stability and to surgical repair or reconstruction. Methods Ten cadaveric knees were mounted in a kinematics rig with loaded quadriceps, ITB, and hamstrings. Length changes of the anterior and posterior fibres of the sMCL, dMCL, and POL were recorded from 0° to 100° flexion by use of a linear displacement transducer and normalised to lengths at 0° flexion. Measurements were repeated with no external load, 90 N anterior draw force, and 5 Nm internal and 5 Nm external rotation torque applied. Results The anterior sMCL lengthened with flexion (p < 0.01) and further lengthened by external rotation (p < 0.001). The posterior sMCL slackened with flexion (p < 0.001), but was lengthened by internal rotation (p < 0.05). External rotation lengthened the anterior dMCL fibres by 10% throughout flexion (p < 0.001). sMCL release allowed the dMCL to become taut with valgus rotation (p < 0.001). The anterior and posterior POL fibres slackened with flexion (p < 0.001), but were elongated by internal rotation (p < 0.001). Conclusion The structures of the medial ligament complex react differently to knee flexion and applied loads. Structures attaching posterior to the medial epicondyle are taut in extension, whereas the anterior sMCL, attaching anterior to the epicondyle, is tensioned during flexion. The anterior dMCL is elongated by external rotation. These data offer the basis for MCL repair and reconstruction techniques regarding graft positioning and tensioning.


2015 ◽  
Vol 1 (1) ◽  
pp. 547-551 ◽  
Author(s):  
A. Geier ◽  
T. Tischer ◽  
R. Bader

AbstractThe medial patellofemoral ligament (MPFL) is a key structure in the treatment of habitual and traumatic patellofemoral instability. However, there exists little knowledge about its behaviour during deep knee flexion after femoral refixation. Since improper femoral attachment sites may lead to unnatural length change patterns in the ligament and consequently to osteoarthritis due to pathological femoro-patellar contact pressure, the understanding of the patella kinematics and MPFL behaviour is crucial.The purpose of this numerical study was to compute the six-degree-of-freedom motion pattern of the human patella during deep knee flexion for systematic analysis of varying landmarks for the femoral attachment in medial patellofemoral ligament reconstruction surgery by means of multibody simulation.Therefore, based on a previously presented musculoskeletal model [1] the dynamic pathways of the patella were computed. Then, the spatial motion was approximated by rheonomic polynomials and exploited for systematic evaluation of the MPFL length change patterns. Hence, 16 femoral attachment points at a radius of 5 mm and 10 mm around the radiographic centre point [2] were defined and the absolute length changes were recorded during deep knee flexion to 120 degree.This approach allows for a systematic evaluation of numerous MPFL attachment sites while exploiting the physiological patella kinematics. The patella kinematics including shift, flexion, tilt and rotation as well as the MPFL length change patterns were consistent to in vitro and in vivo data in the literature [3–7] and therefore indicate validity of the numerical approach. The parameter study on the femoral attachment site should enable to determine the most isometric point and non-isometric variations corresponding to patellofemoral instability, arthritis or high graft load.


Sign in / Sign up

Export Citation Format

Share Document