scholarly journals Compact QEPAS humidity sensor in SF6 buffer gas for high-voltage gas power systems

2022 ◽  
Vol 25 ◽  
pp. 100319
Xukun Yin ◽  
Lei Dong ◽  
Hongpeng Wu ◽  
Miao Gao ◽  
Le Zhang ◽  
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 909
David W. Upton ◽  
Keyur K. Mistry ◽  
Peter J. Mather ◽  
Zaharias D. Zaharis ◽  
Robert C. Atkinson ◽  

The lifespan assessment and maintenance planning of high-voltage power systems requires condition monitoring of all the operational equipment in a specific area. Electrical insulation of electrical apparatuses is prone to failure due to high electrical stresses, and thus it is a critical aspect that needs to be monitored. The ageing process of the electrical insulation in high voltage equipment may accelerate due to the occurrence of partial discharge (PD) that may in turn lead to catastrophic failures if the related defects are left untreated at an initial stage. Therefore, there is a requirement to monitor the PD levels so that an unexpected breakdown of high-voltage equipment is avoided. There are several ways of detecting PD, such as acoustic detection, optical detection, chemical detection, and radiometric detection. This paper focuses on reviewing techniques based on radiometric detection of PD, and more specifically, using received signal strength (RSS) for the localization of faults. This paper explores the advantages and disadvantages of radiometric techniques and presents an overview of a radiometric PD detection technique that uses a transistor reset integrator (TRI)-based wireless sensor network (WSN).

2007 ◽  
Vol 17 (2) ◽  
pp. 2347-2350 ◽  
M. Stemmle ◽  
C. Neumann ◽  
F. Merschel ◽  
U. Schwing ◽  
K.-H. Weck ◽  

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5041
Waldemar Minkina

The article presents problems occurring during remote temperature measurement of lashing clamps of bridge connections on high voltage poles using thermal imaging cameras. The basic metrological parameters of thermal imaging cameras are described. On this basis, typical errors made during the inspection of high voltage lines supplying power substations are presented using infrared cameras. Researching the possible solutions for the problems of remote temperature measurement of small objects of electricity power systems—on the example of lashing clamps of bridge connections on high voltage poles in the proposed paper and showing the basic metrological aspects and parameters of thermal imaging cameras are important because, in this way, it is observed to eliminate costly interruptions in the supply of electricity associated with the breaking of power lines. Small objects are quite difficult to be controlled and monitored on large grids and on large powerline poles; thus, it is very challenging to interpret the data offered by thermograms. The problem of remote temperature measurement of small objects in electrical power engineering is very important from the point of view of the quality and reliability of electricity supply. Obtaining early warning information about the occurrence of overheating, e.g., on lashing clamps of bridge connections, is very important, as it eliminates costly interruptions in the supply of electricity associated with the breaking of power lines supplying high voltage switchgears or substations.

Kim Hung Le ◽  
Ngoc Thien Nam Tran ◽  
Viet Tri Nguyen ◽  
The Khanh Truong ◽  
Minh Quan Duong

The increasing demand for electricity along with the development of distributed generators showed that improving transmission efficiency and reliability is an indispensable requirement in the operation of the power system. Advanced technologies need to be applied to modern power systems for purposes of conveying large power flows, mitigating the risk of faults. High-voltage direct current (HVDC) transmission is now considered an effective solution for investment in large-length power lines, replacing the conventional high-voltage alternative current (HVAC) transmission system, especially in period of increasing generation capacity due to the penetration of renewable energy sources. This study assesses the performance of the HVDC system on an actual power grid based on planning and improvement demands. The calculation results of power flows, power losses and short-circuit faults were investigated using ETAP software X  

Rafal Tarko ◽  
Wieslaw Nowak

The reliability of electrical power transmission and distribution depends upon the progress in the insulation coordination, which results both from the improvement of overvoltage protection methods and new constructions of electrical power devices, and from the development of the surge exposures identification, affecting the insulating system. Owing to the technical, exploitation, and economic nature, the overvoltage risk in high and extra high voltage electrical power systems has been rarely investigated, and therefore the theoretical methods of analysis are intensely developed. This especially applies to lightning overvoltages, which are analyzed using mathematical modeling and computer calculation techniques. The chapter is dedicated to the problems of voltage transients generated by lightning overvoltages in high and extra high voltage electrical power systems. Such models of electrical power lines and substations in the conditions of lightning overvoltages enable the analysis of surge risks, being a result of direct lightning strokes to the tower, ground, and phase conductors. Those models also account for the impulse electric strength of the external insulation. On the basis of mathematical models, the results of numerical simulation of overvoltage risk in selected electrical power systems have been presented. Those examples also cover optimization of the surge arresters location in electrical power substations.

2020 ◽  
Vol 10 (11) ◽  
pp. 3682
Fazel Mohammadi

The Special Issue on “Integration of High Voltage AC/DC Grids into Modern Power Systems” is published. A total of five qualified papers are published in this Special Issue. The topics of the papers are control, protection, operation, planning, and scheduling of high voltage AC/DC grids. Twenty-five researchers have participated in this Special Issue. We hope that this Special Issue is helpful for high voltage applications.

Sign in / Sign up

Export Citation Format

Share Document