Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea

2006 ◽  
Vol 237 (2-4) ◽  
pp. 293-304 ◽  
Author(s):  
Shangbin Xiao ◽  
Anchun Li ◽  
J. Paul Liu ◽  
Muhong Chen ◽  
Qiang Xie ◽  
...  
2013 ◽  
Vol 9 (6) ◽  
pp. 2777-2788 ◽  
Author(s):  
M. Yamamoto ◽  
H. Sai ◽  
M.-T. Chen ◽  
M. Zhao

Abstract. The response of the East Asian winter monsoon variability to orbital forcing is still unclear, and hypotheses are controversial. We present a 150 000 yr record of sea surface temperature difference (ΔSST) between the South China Sea and other Western Pacific Warm Pool regions as a proxy for the intensity of the Asian winter monsoon, because the winter cooling of the South China Sea is caused by the cooling of surface water at the northern margin and the southward advection of cooled water due to winter monsoon winds. The ΔSST showed dominant precession cycles during the past 150 000 yr. The ΔSST varies at precessional band and supports the hypothesis that monsoon is regulated by insolation changes at low-latitudes (Kutzbach, 1981), but contradicts previous suggestions based on marine and loess records that eccentricity controls variability on glacial–interglacial timescales. Maximum winter monsoon intensity corresponds to the May perihelion at precessional band, which is not fully consistent with the Kutzbach model of maximum winter monsoon at the June perihelion. Variation in the East Asian winter monsoon was anti-phased with the Indian summer monsoon, suggesting a linkage of dynamics between these two monsoon systems on an orbital timescale.


2010 ◽  
Vol 55 (21) ◽  
pp. 2306-2314 ◽  
Author(s):  
ShengFa Liu ◽  
XueFa Shi ◽  
YanGuang Liu ◽  
ShuQing Qiao ◽  
Gang Yang ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Tsai-Wen Lin ◽  
Stefanie Kaboth-Bahr ◽  
Kweku Afrifa Yamoah ◽  
André Bahr ◽  
George Burr ◽  
...  

The East Asian Winter Monsoon (EAWM) is a fundamental part of the global monsoon system that affects nearly one-quarter of the world’s population. Robust paleoclimate reconstructions in East Asia are complicated by multiple sources of precipitation. These sources, such as the EAWM and typhoons, need to be disentangled in order to understand the dominant source of precipitation influencing the past and current climate. Taiwan, situated within the subtropical East Asian monsoon system, provides a unique opportunity to study monsoon and typhoon variability through time. Here we combine sediment trap data with down-core records from Cueifong Lake in northeastern Taiwan to reconstruct monsoonal rainfall fluctuations over the past 3000 years. The monthly collected grain-size data indicate that a decrease in sediment grain size reflects the strength of the EAWM. End member modelling analysis (EMMA) on sediment core and trap data reveals two dominant grain-size end-members (EMs), with the coarse EM 2 representing a robust indicator of EAWM strength. The downcore variations of EM 2 show a gradual decrease over the past 3000 years indicating a gradual strengthening of the EAWM, in agreement with other published EAWM records. This enhanced late-Holocene EAWM can be linked to the expansion of sea-ice cover in the western Arctic Ocean caused by decreased summer insolation.


2013 ◽  
Vol 9 (4) ◽  
pp. 4229-4261
Author(s):  
M. Yamamoto ◽  
H. Sai ◽  
M.-T. Chen ◽  
M. Zhao

Abstract. The response of Asian monsoon variability to orbital forcing is still unclear, and all hypotheses are controversial. We present a record of the sea surface temperature difference (ΔSST) between the South China Sea and the other Western Pacific Warm Pool regions as a proxy for the intensity of the Asian winter monsoon, because the winter cooling of the South China Sea is caused by the cooling of surface water at the northern margin and the southward advection of cooled water due to winter monsoon winds. The ΔSST showed significant precession cycles during the last 150 kyr. In the precession cycle, the maximum winter monsoon intensity shown by the ΔSST corresponded to the May perihelion and was delayed behind the maximum ice volume. The East Asian winter monsoon was anti-phase with the Indian summer monsoon and the summer monsoon precipitation in central Japan. The timing of the maximum phase of the East Asian winter monsoon was different from previous results in terms of the March perihelion (ice volume maxima) and June perihelion (minimum of Northern Hemisphere winter insolation). We infer that the variation of the East Asian winter monsoon was caused by a physical mechanism of inter-hemispheric heat balance. The East Asian winter monsoon was intensified by the Northern Hemisphere cooling, which was caused by the combined effect of cooling by the ice volume forcing and the decrease in winter insolation, or by decreased heat transfer from the Southern Hemisphere to the Northern Hemisphere owing to the weak Indian summer monsoon at the May perihelion.


Sign in / Sign up

Export Citation Format

Share Document