Patterns and frequencies of the East Asian winter monsoon variations during the past million years revealed by wavelet and spectral analyses

2003 ◽  
Vol 35 (1-2) ◽  
pp. 67-74 ◽  
Author(s):  
Huayu Lu ◽  
Fuqing Zhang ◽  
Xiaodong Liu
The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Tsai-Wen Lin ◽  
Stefanie Kaboth-Bahr ◽  
Kweku Afrifa Yamoah ◽  
André Bahr ◽  
George Burr ◽  
...  

The East Asian Winter Monsoon (EAWM) is a fundamental part of the global monsoon system that affects nearly one-quarter of the world’s population. Robust paleoclimate reconstructions in East Asia are complicated by multiple sources of precipitation. These sources, such as the EAWM and typhoons, need to be disentangled in order to understand the dominant source of precipitation influencing the past and current climate. Taiwan, situated within the subtropical East Asian monsoon system, provides a unique opportunity to study monsoon and typhoon variability through time. Here we combine sediment trap data with down-core records from Cueifong Lake in northeastern Taiwan to reconstruct monsoonal rainfall fluctuations over the past 3000 years. The monthly collected grain-size data indicate that a decrease in sediment grain size reflects the strength of the EAWM. End member modelling analysis (EMMA) on sediment core and trap data reveals two dominant grain-size end-members (EMs), with the coarse EM 2 representing a robust indicator of EAWM strength. The downcore variations of EM 2 show a gradual decrease over the past 3000 years indicating a gradual strengthening of the EAWM, in agreement with other published EAWM records. This enhanced late-Holocene EAWM can be linked to the expansion of sea-ice cover in the western Arctic Ocean caused by decreased summer insolation.


2013 ◽  
Vol 9 (6) ◽  
pp. 2777-2788 ◽  
Author(s):  
M. Yamamoto ◽  
H. Sai ◽  
M.-T. Chen ◽  
M. Zhao

Abstract. The response of the East Asian winter monsoon variability to orbital forcing is still unclear, and hypotheses are controversial. We present a 150 000 yr record of sea surface temperature difference (ΔSST) between the South China Sea and other Western Pacific Warm Pool regions as a proxy for the intensity of the Asian winter monsoon, because the winter cooling of the South China Sea is caused by the cooling of surface water at the northern margin and the southward advection of cooled water due to winter monsoon winds. The ΔSST showed dominant precession cycles during the past 150 000 yr. The ΔSST varies at precessional band and supports the hypothesis that monsoon is regulated by insolation changes at low-latitudes (Kutzbach, 1981), but contradicts previous suggestions based on marine and loess records that eccentricity controls variability on glacial–interglacial timescales. Maximum winter monsoon intensity corresponds to the May perihelion at precessional band, which is not fully consistent with the Kutzbach model of maximum winter monsoon at the June perihelion. Variation in the East Asian winter monsoon was anti-phased with the Indian summer monsoon, suggesting a linkage of dynamics between these two monsoon systems on an orbital timescale.


1997 ◽  
Vol 48 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Jule Xiao ◽  
Yoshio Inouchi ◽  
Hisao Kumai ◽  
Shusaku Yoshikawa ◽  
Yoichi Kondo ◽  
...  

Eolian quartz flux (EQF, g cm−2(103 yr)−1) to Lake Biwa, central Japan, provides direct information on variations of the East Asian winter monsoon. Lake Biwa sediments spanning the past ca. 145,000 yr are characterized by two main periods when EQF values were significantly greater than 5.50 g cm−2(103 yr)−1, and two main intervals during which EQF values were lower. Two periods with EQF values >5.50 g cm−2(103 yr)−1occurred from ca. 145,000 to 125,000 and 73,000 to 13,000 yr B.P., while times of lower EQF values occurred from ca. 125,000 to 73,000 yr B.P. and around ca. 5500 yr B.P. Between ca. 125,000 and 73,000 yr B.P., three minimum EQF values and two intervening peaks of slightly higher EQF values are recorded. EQF increased markedly from ca. 73,000 to 13,000 yr B.P., whereas between ca. 53,000 and 20,000 yr B.P. the values recorded were relatively lower than those recorded during either the preceding or the subsequent episodes. The data imply that the East Asian winter monsoon strengthened during the periods when EQF values were high, and weakened during the intervals with low EQF values. The EQF record of Lake Biwa can be correlated with the grain-size record of the quartz fraction in Chinese loess and with the SPECMAP marine δ18O record. However, the EQF record apparently lags ca. 5000 yr behind the loess and δ18O records during stage 6/5 and 2/1 transitions and ca. 10,000 yr during stage 5/4 transition. These apparent lags could be due to problems with the chronology; alternatively, they may imply that the eolian quartz flux depended more on the extent of dust source regions than on wind intensity during these transitions.


1995 ◽  
Vol 44 (2) ◽  
pp. 149-159 ◽  
Author(s):  
Zhongli Ding ◽  
Tungsheng Liu ◽  
Nat W. Rutter ◽  
Zhiwei Yu ◽  
Zhengtang Guo ◽  
...  

AbstractParticle-size measurements of some typical loess-soil samples taken in different localities of the Chinese Loess Plateau demonstrate that the grain size ratio of <2 μm/>10 μm (%) can be used as an indicator of variations in intensity of the East Asian winter monsoon winds. Grain-size curves of the Baoji and Weinan sections show that this proxy indicator is very sensitive to loess-soil alterations. Analytical results also suggest that during soil-forming periods, eolian dust accumulation was still substantial and, hence, loess deposition can be regarded as a nearly continuous process during the Quaternary period. In this study we compared the Baoji grain-size time series with the SPECMAP marine isotope record with the objective of elucidating the dynamic linkage between changes in global ice volume and the winter monsoon circulation. Both records show good agreement at both time and frequency domains. In particular, the winter monsoon variations are also dominated by a 100,000 yr period over the past 800,000 yr. It is thus inferred that direct local insolation forcing could be less important in driving the East Asian winter monsoon variability, and, alternatively, variations in glacial-age boundary conditions may have played a key role in modulating and pacing its strength and timing.


2021 ◽  
pp. 118213
Author(s):  
L.I. Yanjun ◽  
A.N. Xingqin ◽  
Z.H.A.N.G. Peiqun ◽  
Y.A.N.G. Jianling ◽  
W.A.N.G. Chao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document