The Cenomanian–Turonian boundary mass extinction (Late Cretaceous): New insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America)

2009 ◽  
Vol 282 (1-4) ◽  
pp. 88-104 ◽  
Author(s):  
Claude Monnet
2021 ◽  
Vol 288 (1953) ◽  
pp. 20210692
Author(s):  
Susannah C. R. Maidment ◽  
Christopher D. Dean ◽  
Robert I. Mansergh ◽  
Richard J. Butler

In order for palaeontological data to be informative to ecologists seeking to understand the causes of today's diversity patterns, palaeontologists must demonstrate that actual biodiversity patterns are preserved in our reconstructions of past ecosystems. During the Late Cretaceous, North America was divided into two landmasses, Laramidia and Appalachia. Previous work has suggested strong faunal provinciality on Laramidia at this time, but these arguments are almost entirely qualitative. We quantitatively investigated faunal provinciality in ceratopsid and hadrosaurid dinosaurs using a biogeographic network approach and investigated sampling biases by examining correlations between dinosaur occurrences and collections. We carried out a model-fitting approach using generalized least-squares regression to investigate the sources of sampling bias we identified. We find that while the raw data strongly support faunal provinciality, this result is driven by sampling bias. The data quality of ceratopsids and hadrosaurids is currently too poor to enable fair tests of provincialism, even in this intensively sampled region, which probably represents the best-known Late Cretaceous terrestrial ecosystem on Earth. To accurately reconstruct biodiversity patterns in deep time, future work should focus on smaller scale, higher resolution case studies in which the effects of sampling bias can be better controlled.


2018 ◽  
Author(s):  
S. Augusta Maccracken ◽  
◽  
Ian M. Miller ◽  
Conrad C. Labandeira

2014 ◽  
Vol 51 (7) ◽  
pp. 677-681 ◽  
Author(s):  
Matthew J. Vavrek ◽  
Alison M. Murray ◽  
Phil R. Bell

A recent survey of the middle Cenomanian Dunvegan Formation along the Peace River, Alberta, has yielded a partial skull of a large acipenseriform fish. The fossil was from an animal approximately 5 m in length, based on comparisons with living relatives. Though incomplete, this represents an important record of mid-Cretaceous fish from northern North America, as formations of this age are virtually unexplored in northern regions. This fossil is the oldest acipenserid from North America, and one of the most northerly known.


1998 ◽  
Vol 67 (4) ◽  
pp. 237-255 ◽  
Author(s):  
G.A. Bishop ◽  
R.M. Feldmann ◽  
F. Vega

The podotrematous crab family Dakoticancridae includes four genera: Dakoticancer Rathbun, Tetracarcinus Weller, Avitelmessus Rathbun, and Seorsus Bishop, all known solely from the Late Cretaceous of North America. Lathelicocarcinus Bishop, originally referred to the family, must be reassigned. Fine details of anatomy, preserved on specimens of D. overanus Rathbun and A. grapsoideus Rathbun, permit description of genital openings and interpretation of functional morphology of appendages. Although one species, D. australis Rathbun, has been found associated with burrow structures, all were probably vagrant epifaunal animals on fine- to medium-grained siliciclastic substrata. Food was probably obtained by generalized low-level predation and scavenging. Results of a cladistic analysis are consistent with the stratigraphic data suggesting that T. subquadrata Weller is nearest the rootstock of the family and that other taxa within the family are derived from it.


Zootaxa ◽  
2020 ◽  
Vol 4804 (1) ◽  
pp. 1-79
Author(s):  
MADISON ARMSTRONG ◽  
STEPHEN R. WESTROP ◽  
JENNIFER D. EOFF

The Cambrian (Marjuman–Steptoean; Guzhangian–Paibian) kingstoniid trilobite Blountia Walcott, 1916 is distributed widely in shelf strata of Laurentian North America. Species known from Marjuman formations were lost at the mass extinction at the end of that stage. New species entered the succession during and after the extinction interval, only to disappear within the Aphelaspis Zone of the lower part of the Steptoean Stage. Steptoean species and several uppermost Marjuman (Crepicephalus Zone) species are treated in this monograph. New collections and revision of type and other archival material increase the number of species in Steptoean strata from two to six. Phylogenetic analysis supports monophyly of Blountia and Maryvillia Walcott, 1916; Blountina Lochman, in Lochman & Duncan, 1944 is retained as a monotypic taxon. Steptoean species do not form a single subclade within the cladogram, so there is no evidence for a simple monophyletic radiation following the end-Marjuman extinction. New species are Blountia angelae, B. morgancreekensis, B. nevadensis, B. newfoundlandensis, and B. tennesseensis. 


1992 ◽  
Vol 6 ◽  
pp. 132-132
Author(s):  
Thomas R. Holtz

It has often been assumed that the intensively studied dinosaur faunal assemblages of western North America and the Gobi Desert of Mongolia and China represent “typical” Late Cretaceous terrestrial vertebrate communities. This assumption has led to a paleoecological scenario in which a global ecological shift occurs from the dominance of high-browsing saurischian (i.e., sauropod) to low-browsing ornithischian (i.e., iguanodontian, marginocephalian, ankylosaurian) herbivore communities. Furthermore, the assumption that the Asiamerican dinosaur faunas are communities “typical” of the Late Cretaceous has forced the conclusion that the sauropod-dominated Argentine population must have been an isolated relict ecosystem of primitive taxa (i.e., titanosaurid sauropods, abelisaurid ceratosaurs). Recent discoveries and reinterpretations of other Late Cretaceous assemblages, however, seriously challenge these assumptions.Paleogeography and paleobiogeography have demonstrated that terrestrial landmasses became progressively fractionated from the Late Jurassic (Kimmeridgian-Tithonian) to the Late Cretaceous (Campanian), owing to continental drift and the development of large epicontinental seas (the Western Interior Seaway, the Turgai Sea, etc.). The Maastrichtian regressions resulted in the reestablishment of land connection between long isolated regions (for example, western and eastern North America). These geographic changes are reflected in changes in the dinosaurian faunas. These assemblages were rather cosmopolitan in the Late Jurassic (Morrison, Tendaguru, and Upper Shaximiao Formations) but became more provincialized throughout the Cretaceous.Cluster analysis of presence/absence data for the theropod, sauropod, and ornithischian clades indicates that previous assumptions for Late Cretaceous dinosaurian paleoecology are largely in error. These analyses instead suggest that sauropod lineages remained a major faunal component in both Laurasia (Europe, Asia) and Gondwana (South America, Africa, India, and Australia). Only the pre-Maastrichtian Senonian deposits of North America were lacking sauropodomorphs. Furthermore, the abelisaurid/titanosaurid fauna of Argentina is, in fact, probably more typical of Late Cretaceous dinosaurian communities. Rather, it is the coelurosaurian/ornithischian communities of Asiamerica (and particularly North America) that are composed primarily of dinosaurs of small geographic distribution. Thus, the Judithian, Edmontonian, and Lancian faunas, rather than being typical of the Late Cretaceous, most likely represent an isolated island-continent terrestrial vertebrate population, perhaps analogous to the extremely isolated vertebrate communities of Tertiary South America. Furthermore, the shift from high-browsing to low-browsing herbivore “dynasties” more likely represents a local event in Senonian North America and does not represent a global paleoecological transformation of Late Cretaceous dinosaur community structure.


Author(s):  
Sydney R. Mohr ◽  
John H. Acorn ◽  
Gregory F. Funston ◽  
Philip J. Currie

The Cretaceous birds of Alberta are poorly known, as skeletal elements are rare and typically consist of fragmentary postcranial remains. A partial avian coracoid from the upper Campanian Dinosaur Park Formation of Alberta, Canada, can be referred to the Ornithurae, and is referred to here as Ornithurine G (cf. Cimolopteryx). Its structure is similar to previously described ornithurine coracoids from Alberta and other localities in North America, particularly those belonging to the genus Cimolopteryx. A comparison of these elements indicates that the new coracoid is distinct; however, its preservation prevents complete diagnosis. As other Cimolopteryx are Maastrichtian in age, Ornithurine G (cf. Cimolopteryx) also represents the earliest occurrence of a Cimolopteryx-like anatomy. A pneumatized coracoid is a diagnostic trait of Neornithes, identified by the presence of a pneumatic foramen. Ornithurine G (cf. Cimolopteryx) does not preserve this feature. CT and micro-CT scans of both pneumatic and apneumatic coracoids of modern birds show similar internal structures to Ornithurine G (cf. Cimolopteryx), indicating that pneumaticity of the coracoid cannot be determined in the absence of an external pneumatic foramen. A comparison between members of Cimolopterygidae, including Cimolopteryx and Lamarqueavis, raises questions about the assignment of Lamarqueavis to the Cimolopterygidae, and the validity of this family as a whole.


Sign in / Sign up

Export Citation Format

Share Document