Paleoproductivity of the Chang 7 unit in the Ordos Basin (North China) and its controlling factors

2020 ◽  
Vol 551 ◽  
pp. 109741 ◽  
Author(s):  
Guo Chen ◽  
Wenzhe Gang ◽  
Xiangchuan Chang ◽  
Ning Wang ◽  
Pengfei Zhang ◽  
...  
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jiaxuan Song ◽  
Hujun Gong ◽  
Jingli Yao ◽  
Huitao Zhao ◽  
Xiaohui Zhao ◽  
...  

The Paleozoic strata are widely distributed in the northwest of the Ordos Basin, and the provenance attributes of the basin sediments during this period are still controversial. In this paper, the detrital zircon LA-MC-ICPMS U-Pb age test was conducted on the drilling core samples of the Shanxi Formation of the Upper Paleozoic in the Otuokeqi area of the Ordos Basin, and the provenance age and the characteristic of the Shanxi formation in the Otuokeqi area in the northwest were discussed. The cathodoluminescence image shows that the detrital zircon has a clear core-edge structure, and most of the cores have clear oscillatory zonings, which suggests that they are magmatic in origin. Zircons have no oscillatory zoning structure that shows the cause of metamorphism. The age of detrital zircon is dominated by Paleoproterozoic and can be divided into four groups, which are 2500~2300 Ma, 2100~1600 Ma, 470~400 Ma, and 360~260 Ma. The first two groups are the specific manifestations of the Precambrian Fuping Movement (2.5 billion years) and the Luliang Movement (1.8 billion years) of the North China Craton. The third and fourth groups of detrital zircons mainly come from Paleozoic magmatic rocks formed by the subduction and collision of the Siberian plate and the North China plate. The ε Hf t value of zircon ranges from -18.36 to 4.33, and the age of the second-order Hf model T DM 2 ranges from 2491 to 1175 Ma. The source rock reflecting the provenance of the sediments comes from the material recycling of the Paleoproterozoic and Mesoproterozoic in the crust, combined with the Meso-Neoproterozoic detrital zircons discovered this time, indicating that the provenance area has experienced Greenwellian orogeny.


2021 ◽  
pp. 103670
Author(s):  
Xin Jin ◽  
Viktória Baranyi ◽  
Marcello Caggiati ◽  
Marco Franceschi ◽  
Corey J. Wall ◽  
...  

1991 ◽  
Vol 104 (2-4) ◽  
pp. 258-277 ◽  
Author(s):  
Zhenyu Yang ◽  
Xinghua Ma ◽  
Jean Besse ◽  
Vincent Courtillot ◽  
Lisheng Xing ◽  
...  

2021 ◽  
Author(s):  
Jingzhe Guo ◽  
Lifa Zhou

<p>The Ordos Basin is located in the central and western part of China, which is rich in oil resources in Mesozoic strata. Huanxian area is located in the west of the Ordos Basin, covering an area of about 3000 km<sup>2</sup>. With the wide distribution of Jurassic low resistivity reservoir, it is difficult to identify reservoir fluid by logging, which restricts the efficient promotion of oil resources exploration and development in this area to a certain extent.</p><p>Based on the basic geological law, this study makes full use of the data of oil test conclusion, production performance and formation water analysis to deeply analyze the genesis of low resistivity reservoir in this area. The average formation water salinity of Jurassic in Huanxian area is 63.5g/l. Through the correlation analysis of mathematical methods such as fitting and regression, the formation water salinity and reservoir apparent resistivity show a good negative correlation in the semi logarithmic coordinate, and the correlation coefficient is 0.78. Therefore, it is considered that the main controlling factor for the widespread development of low resistivity reservoir in this area is the high formation water salinity. Irreducible water saturation, clay mineral content and nose bulge structure amplitude are the secondary controlling factors for the development of low resistivity reservoir in this area, and their correlation coefficients with apparent resistivity are 0.23, 0.25 and 0.31, respectively.</p><p>On the basis of clarifying the genesis of Jurassic low resistivity reservoir in Huanxian area, the comprehensive identification of reservoir fluid type by logging is carried out. For the whole area, there are obvious differences in geological characteristics, so conventional methods such as cross plot method of acoustic time difference and apparent resistivity can not effectively identify reservoir fluid. According to the main controlling factors of reservoir apparent resistivity, the salinity of formation water is combined with apparent resistivity and resistivity index of reservoir respectively to establish the cross plot. Using these two kinds of cross plot, the accuracy of reservoir fluid type identification is 62.9% and 88.6% respectively. This method can meet the accuracy requirements of reservoir fluid identification, realize the rapid identification of reservoir fluid types in the whole area, and provide technical support for efficient exploration and development of Jurassic low resistivity reservoir in this area.</p>


2016 ◽  
Vol 58 (11) ◽  
pp. 1417-1442 ◽  
Author(s):  
Zhen-Hong Li ◽  
Sheng-Li Xi ◽  
Sheng-Bin Feng ◽  
Xin-She Liu

Sign in / Sign up

Export Citation Format

Share Document