Development and evaluation of fast branch-and-bound algorithm for feature matching based on line segments

2007 ◽  
Vol 40 (5) ◽  
pp. 1432-1450 ◽  
Author(s):  
Lik-Kwan Shark ◽  
Andrey A. Kurekin ◽  
Bogdan J. Matuszewski
Author(s):  
Bishaljit Paul ◽  
Sushovan Goswami ◽  
Dipu Mistry ◽  
Chandan Kumar Chanda

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1196
Author(s):  
Gang Li ◽  
Yawen Zeng ◽  
Huilan Huang ◽  
Shaojian Song ◽  
Bin Liu ◽  
...  

The traditional simultaneous localization and mapping (SLAM) system uses static points of the environment as features for real-time localization and mapping. When there are few available point features, the system is difficult to implement. A feasible solution is to introduce line features. In complex scenarios containing rich line segments, the description of line segments is not strongly differentiated, which can lead to incorrect association of line segment data, thus introducing errors into the system and aggravating the cumulative error of the system. To address this problem, a point-line stereo visual SLAM system incorporating semantic invariants is proposed in this paper. This system improves the accuracy of line feature matching by fusing line features with image semantic invariant information. When defining the error function, the semantic invariant is fused with the reprojection error function, and the semantic constraint is applied to reduce the cumulative error of the poses in the long-term tracking process. Experiments on the Office sequence of the TartanAir dataset and the KITTI dataset show that this system improves the matching accuracy of line features and suppresses the cumulative error of the SLAM system to some extent, and the mean relative pose error (RPE) is 1.38 and 0.0593 m, respectively.


Author(s):  
Jan-Lucas Gade ◽  
Carl-Johan Thore ◽  
Jonas Stålhand

AbstractIn this study, we consider identification of parameters in a non-linear continuum-mechanical model of arteries by fitting the models response to clinical data. The fitting of the model is formulated as a constrained non-linear, non-convex least-squares minimization problem. The model parameters are directly related to the underlying physiology of arteries, and correctly identified they can be of great clinical value. The non-convexity of the minimization problem implies that incorrect parameter values, corresponding to local minima or stationary points may be found, however. Therefore, we investigate the feasibility of using a branch-and-bound algorithm to identify the parameters to global optimality. The algorithm is tested on three clinical data sets, in each case using four increasingly larger regions around a candidate global solution in the parameter space. In all cases, the candidate global solution is found already in the initialization phase when solving the original non-convex minimization problem from multiple starting points, and the remaining time is spent on increasing the lower bound on the optimal value. Although the branch-and-bound algorithm is parallelized, the overall procedure is in general very time-consuming.


Sign in / Sign up

Export Citation Format

Share Document