Assessment of rainwater retention in agricultural land and crop yield increase due to conservation tillage in Ewaso Ng’iro river basin, Kenya

2006 ◽  
Vol 31 (15-16) ◽  
pp. 910-918 ◽  
Author(s):  
Stephen N. Ngigi ◽  
Johan Rockström ◽  
Hubert H.G. Savenije
2012 ◽  
Vol 16 (12) ◽  
pp. 4725-4735 ◽  
Author(s):  
M. Temesgen ◽  
S. Uhlenbrook ◽  
B. Simane ◽  
P. van der Zaag ◽  
Y. Mohamed ◽  
...  

Abstract. Adoption of soil conservation structures (SCS) has been low in high rainfall areas of Ethiopia mainly due to crop yield reduction, increased soil erosion following breaching of SCS, incompatibility with the tradition of cross plowing and water-logging behind SCS. A new type of conservation tillage (CT) involving contour plowing and the construction of invisible subsoil barriers using a modified Maresha winged "subsoiler" is suggested as a means to tackle these problems as an integral part of the SCS. We investigated the effect of integrating the CT with SCS on the surface runoff, water-logging, soil loss, crop yield and plowing convenience. The new approach of conservation tillage has been compared with traditional tillage (TT) on 5 farmers' fields in a high rainfall area in the upper Blue Nile (Abbay) river basin. Test crops were wheat [triticum vulgare] and tef [eragrostis tef]. Farmers found CT convenient to apply between SCS. Surface runoff appeared to be reduced under CT by 48 and 15%, for wheat and tef, respectively. As a result, CT reduced sediment yield by 51 and 9.5%, for wheat and tef, respectively. Significantly reduced water-logging was observed behind SCS in CT compared to TT. Grain yields of wheat and tef increased by 35 and 10%, respectively, although the differences were not statistically significant apparently due to high fertility variations among fields of participating farmers. Farmers who tested CT indicated that they will continue this practice in the future.


2012 ◽  
Vol 9 (1) ◽  
pp. 1085-1114 ◽  
Author(s):  
M. Temesgen ◽  
S. Uhlenbrook ◽  
B. Simane ◽  
P. van der Zaag ◽  
Y. Mohamed ◽  
...  

Abstract. Adoption of soil conservation structures (SCS) has been low in high rainfall areas of Ethiopia mainly due to crop yield reduction, increased soil erosion following breaching of SCS, incompatibility with the tradition of cross plowing and water-logging behind SCS. A new type of conservation tillage (CT) involving contour plowing and the construction of invisible subsoil barriers using a modified Maresha winged "subsoiler" is suggested as a means to tackle these problems as an integral part of the SCS. We investigated the effect of integrating the CT with SCS on the surface runoff, water-logging, soil loss, crop yield and plowing convenience. The new approach of conservation tillage has been compared with traditional tillage (TT) on 5 farmers' fields in a high rainfall area in the upper Blue Nile (Abbay) river basin. Test crops were wheat [triticum vulgare] and tef [eragrostis tef]. Farmers found CT convenient to apply between SCS. Surface runoff appeared to be reduced under CT by 48 and 15%, for wheat and tef, respectively. As a result, CT reduced sediment yield by 51 and 9.5%, for wheat and tef, respectively. Significantly reduced water-logging was observed behind SCS in CT compared to TT. Grain yields of wheat and tef increased by 35 and 10%, respectively, although the differences were not statistically significant apparently due to high fertility variations among fields of participating farmers. Farmers who tested CT indicated that they will continue this practice in the future.


2014 ◽  
Vol 27 (4) ◽  
pp. 1413-1424 ◽  
Author(s):  
T. Davies-Barnard ◽  
P. J. Valdes ◽  
J. S. Singarayer ◽  
C. D. Jones

Abstract Future land cover will have a significant impact on climate and is strongly influenced by the extent of agricultural land use. Differing assumptions of crop yield increase and carbon pricing mitigation strategies affect projected expansion of agricultural land in future scenarios. In the representative concentration pathway 4.5 (RCP4.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the carbon effects of these land cover changes are included, although the biogeophysical effects are not. The afforestation in RCP4.5 has important biogeophysical impacts on climate, in addition to the land carbon changes, which are directly related to the assumption of crop yield increase and the universal carbon tax. To investigate the biogeophysical climatic impact of combinations of agricultural crop yield increases and carbon pricing mitigation, five scenarios of land-use change based on RCP4.5 are used as inputs to an earth system model [Hadley Centre Global Environment Model, version 2–Earth System (HadGEM2-ES)]. In the scenario with the greatest increase in agricultural land (as a result of no increase in crop yield and no climate mitigation) there is a significant −0.49 K worldwide cooling by 2100 compared to a control scenario with no land-use change. Regional cooling is up to −2.2 K annually in northeastern Asia. Including carbon feedbacks from the land-use change gives a small global cooling of −0.067 K. This work shows that there are significant impacts from biogeophysical land-use changes caused by assumptions of crop yield and carbon mitigation, which mean that land carbon is not the whole story. It also elucidates the potential conflict between cooling from biogeophysical climate effects of land-use change and wider environmental aims.


Author(s):  
I.N. Kurochkin ◽  
◽  
E.Yu. Kulagina ◽  
N.V. Chugay ◽  
◽  
...  

The main trends in changing the land use structure in the territory of the Klyazma River basin were de-scribed in the article. Using GIS technologies and remote sensing data the areas of land with different land use regimes in the studied territory were determined in the period from 2001 to 2019. The indices of LAI and FPAR phytoproductivity for the territory of the Klyazma basin as a whole, and for each basin included in it were determined. The analysis of the dynamics of changes occurring in the structure of land use is carried out. For the territory of Vladimir region, which is a part of the Klyazma River basin, an assessment of soil types distribution over occupied area was carried out. An integral indicator of soil fertility was calcu-lated on the basis of statistical data of agrochemical indicators. The fraction of fallow lands decreased by 2019 and it amounts 33.76% of the total area of the studied territory. The fraction of mixed forests increased from 38.48% in 2001 to 44.50% in 2019 due to the formation of fast-growing tree species shoots on fallow lands. The area of meadow vegetation for the period from 2015 to 2019 decreased by 3.5%, from 4 276 to 3 121 km2, due to agriculture degradation and a significant decrease in livestock grazing. The indicator of soil fertility for the Klyazma basin was 0.74, which is a high indicator. It is established that the most active decrease in the agricultural land area occurs in the central, north-western and western parts of the river basin.


2019 ◽  
Vol 18 (1) ◽  
pp. 123-132
Author(s):  
CRIZ RENÊ ZANOVELLO ◽  
FABIANO PACENTCHUK ◽  
JAQUELINE HUZAR-NOVAKOWISKI ◽  
GUILHERME ZAMBONIN ◽  
ANTHONY HASEGAWA SANDINI ◽  
...  

RESUMO – O milho é uma planta monoica, e a geração de novos híbridos exige a remoção do pendão das plantas.Sabe-se que a remoção do pendão possui efeito negativo na produtividade da cultura. Contudo, a aplicação de Ncomplementar, via foliar, poderia minimizar essas perdas. Assim, o objetivo deste estudo foi avaliar como o Ncomplementar afeta a produtividade e os componentes de rendimento da cultura do milho submetida ao despendoamento.O estudo foi conduzido em delineamento de blocos casualizados em esquema fatorial 2 x 3 x 5, sendo duas safras(2014/15 e 2015/16), três momentos de despendoamento (sem despondoamento, arranquio de 2-3 folhas e arranquiode 4-5 folhas antes do pendoamento) e cinco doses de N complementar (0, 5, 10, 15, 20 L ha-1) aplicadas no estádio depré-pendoamento (VT). Não foi verificada interação N complementar X despendoamento para nenhuma das variáveisestudadas. A menor produtividade foi verificada no despendoamento de 4-5 folhas. A aplicação de N complementaraumentou a produtividade da cultura do milho, e a aplicação de 11,5 L ha-1 incrementou a produtividade em 448 kgha-1. O despendoamento diminuiu a produtividade da cultura do milho, quanto mais precoce o despendoamento, maisnegativo é o efeito na produtividade.Palavras-chave: Melhoramento genético, N complementar, pendoamento, produção de sementes, Zea mays.FOLIAR APPLICATION OF COMPLEMENTARY NITROGEN,IN MAIZE SUBJECTED TO DETASSELINGABSTRACT – Maize is a monoic plant and the generation of new hybrids requires the removal of the tassel from theplants, which has a negative effect on crop yield. However, the use of complementary leaf nitrogen (N) fertilization,could minimize the yield losses. Therefore, the objective of this study was to evaluate the effect os the application ofcomplementary N affects on yield of the maize crop subjected to detasseling. The study was carried out in a randomizedcomplete block design, with a 2 x 3 x 5 factorial scheme and four replications. Two growing seasons (2014/15 and2015/16), three detasseling moments (without detasseling, detasseling of 2-3 leaves, and detasseling of 4-5 leaves)and five doses of complementary N (0, 5, 10, 15, 20 L ha-1) applied at the VT stage. There was no interaction betweencomplementary N and detasseling for any of the variables studied. The lowest yield was verified with the detasselingof 4-5 leaves. The application of complementary N showed a positive effect on maize yield, and the application of 11.5L ha-1 of complementary N provided yield increase of 448 kg ha-1. The detasseling technique had negative effects onmaize crop yield, the earlier is the detasseling, the more negative is the effect on yield.Keywords: Genetic improvement, Seed production, tasseling, Zea mays.


2021 ◽  
Vol 13 (2) ◽  
pp. 254-264
Author(s):  
Nguyen DUNG ◽  
◽  
Dang MINH ◽  
Bui AN ◽  
Nguyen NGA ◽  
...  

Floods are considered to be one of the most costly natural hazards in the Lam river basin causing infrastructure damages as well as devastating the affected area and relatively high death toll. So prevention is necessary for shielding lives and properties. The flood management on the Lam River basin has been considering for many years to minimize damages caused by flooding. The flood hazard zoning map is one of the indispensable tools to provide information about hazard and risk levels in a particular area and to perform the necessary preventive and preparedness procedures. The multicriteria decision analysis based on geographic information systems is used to build a flood hazard map of the study area. The analytic hierarchy process is applied to extract the weights of six criteria affecting the areas where are prone to flooding hazards, including rainfall, slope, relative slope length, soil, land cover, and drainage density. The results showed in 91.32 % (20103.83 km2) of the basin located in the moderate hazard zones to very high hazard zones. Accordingly, this study also determined 4 vulnerability levels to agricultural land including low, medium, high, and very high. About 94% of the total area of agricultural land in the basin are classified into moderate to the very high hazard of flood vulnerability. The paper presents a method that allows flood risk areas in the Lam River basin to receive information about flood risks on a smartphone, making them more aware.


2021 ◽  
Author(s):  
Cong He ◽  
Jia‐Rui Niu ◽  
Cheng‐Tang Xu ◽  
Shou‐Wei Han ◽  
Wei Bai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document