ANALYSIS OF DYNAMICS OF LAND USE STRUCTURE AND SOIL FERTILITY INDICATORS OVER THE KLYAZMA RIVER BASIN

Author(s):  
I.N. Kurochkin ◽  
◽  
E.Yu. Kulagina ◽  
N.V. Chugay ◽  
◽  
...  

The main trends in changing the land use structure in the territory of the Klyazma River basin were de-scribed in the article. Using GIS technologies and remote sensing data the areas of land with different land use regimes in the studied territory were determined in the period from 2001 to 2019. The indices of LAI and FPAR phytoproductivity for the territory of the Klyazma basin as a whole, and for each basin included in it were determined. The analysis of the dynamics of changes occurring in the structure of land use is carried out. For the territory of Vladimir region, which is a part of the Klyazma River basin, an assessment of soil types distribution over occupied area was carried out. An integral indicator of soil fertility was calcu-lated on the basis of statistical data of agrochemical indicators. The fraction of fallow lands decreased by 2019 and it amounts 33.76% of the total area of the studied territory. The fraction of mixed forests increased from 38.48% in 2001 to 44.50% in 2019 due to the formation of fast-growing tree species shoots on fallow lands. The area of meadow vegetation for the period from 2015 to 2019 decreased by 3.5%, from 4 276 to 3 121 km2, due to agriculture degradation and a significant decrease in livestock grazing. The indicator of soil fertility for the Klyazma basin was 0.74, which is a high indicator. It is established that the most active decrease in the agricultural land area occurs in the central, north-western and western parts of the river basin.

2020 ◽  
Author(s):  
Tatiana Trifonova ◽  
Natalia Mishchenko ◽  
Pavel Shutov

<p>The Klyazma river catchment basin is located in the center of the East European plain. It is characterized by a diverse landscape structure but at the same time represents a single ecosystem possessing common functioning features and similar features of dynamic processes.</p><p>The biological indicators dynamics of the Klyazma river basin landscape functioning has been analyzed. These indicators included: phytoproductivity, photosynthetic activity, soil cover carbon accumulation, as well as the analysis of land use structure changes over the past 20 years.  The assessment was carried out for the entire basin, as well as for individual landscapes within the basin differing in structure and composition of the soil and vegetation cover.</p><p>The research was performed using geoinformation analysis of remote sensing data and cartographic information applying basin approach. The river network vectorization and the watershed boundaries definition were carried out basing on digital terrain model (DEM). The input data comprised radar topographic survey of the Earth-SRTM 90. The productivity indicators calculation in carbon units, LAI (Leaf area index) and FPAR (Fraction of Absorbed Photosynthetically Active Radiation) indices are based on Modis data. Organic carbon stocks in soil are determined using the "Trends. Earth " GIS package QGIS 2.18.</p><p>The land use structure analysis shows that the trend for forest vegetation increase and arable land and pastures reduction is common to all landscapes, but different in changes speed and scale. The most stable is the land structure in Meshchera province, where almost 90% is occupied by forests and their area has not changed significantly.</p><p>Over the period of 2000 - 2019, the Klyazma river basin ecosystem was characterized by the annual value fluctuations of gross primary GPP production, net primary NPP production, and MP respiration costs up and down in comparison with the average values. There is no stable tendency in productivity growth or decline.</p><p>The maximum annual changes in productivity indicators are observed for the landscape of the Klin-Dmitrov ridge. The analysis showed that various landscapes differ in their biological parameters varying within different limits.</p><p>The agricultural land overgrowing with forest vegetation is accompanied by the increase in carbon deposition in the soil. Landscapes of the stable land use structure are characterized with zero carbon balance, while landscapes with forest vegetation with slightly negative carbon balance in the soil. However, the average biological indicators of the entire river basin ecosystem remain relatively stable. It testifies of the compensating biological mechanisms maintaining the ecosystem stability within a large ecosystem. That is, changes in some landscapes are compensated by changes in others according to the feedback principle.</p><p>The analysis of productivity features, land use structure, and carbon deposition in the soil in the Klyazma basin and certain key sites associated with different landscapes allowed us to determine a representative key site, located within Klin-Dmitrov ridge for the environmental monitoring of the entire basin.</p><p>The research allowed determining a representative area within the basin for environmental monitoring of the entire basin ecosystem.</p><p>The research has been carried out under RFBR financial support (№ 19-05-00363)</p>


2021 ◽  
pp. 70-77
Author(s):  
Т.К. МУЗЫЧЕНКО ◽  
М.Н. МАСЛОВА

В статье рассмотрено пространственное распределение типов земель в пределах трансграничного бассейна р. Раздольная. На основе дешифрирования космических снимков Sentinel-2 и Landsat 8 составлена карта пространственного распределения типов земель по состоянию на 2019 г. Исходя из геоэкологической классификации ландшафтов В.А. Николаева в данной работе было выделено 12 типов земель: используемые и неиспользуемые сельскохозяйственные земли, используемые и неиспользуемые рисовые поля, карьеры, леса, лесопосадки, рубки, луга, застроенные земли, водные объекты, а также кустарники и редколесья. Представлены абсолютные и относительные площади для каждого типа земель по трансграничному бассейну в целом, а также отдельно для его российской и китайской частей. По результатам дешифрирования данных дистанционного зондирования установлено, что российская и китайская части бассейна р. Раздольная имеют существенные трансграничные различия в структуре земель. На российской части бассейна лесами покрыто чуть более половины площади, но при этом значительные площади занимают сельскохозяйственные земли и луга. В некоторых местах луга и сельскохозяйственные земли преобладают в большей степени, чем леса. На китайской части лесные территории доминируют над другими типами земель. Сельскохозяйственные земли и луга образуют узкие и длинные полосы и имеют более мозаичное распространение, чем на российской части. Здесь заметно меньше площади застроенных земель, а площади рубок и лесопосадок больше, чем на российской части. Площади карьеров примерно равны в обеих частях бассейна. The transboundary Razdolnaya river basin is nearly evenly split up between Primorsky Krai of Russian Federation and Heilongjiang and Jilin provinces of People’s Republic of China. The Chinese and the Russian parts of the transboundary river have developed independently of each other. Therefore, the two have a different land cover and land use structure. The analysis of land cover and land use structure is of utmost importance for the understanding the modern state of land development and the possibilities of its future development. Using the remote sensing data, such as Sentinel-2 and Landsat 8 satellite imagery, the land cover and land use map of the Razdolnaya transboundary river basin for 2019 has been composed by means of the ArcMap 10.5 software package. According to V.A. Nikolaev’s geoecological classification of landscapes, we have identified 12 land types: forests, meadows, shrubs and woodlands, agricultural lands, unused agricultural lands, rice fields, unused rice fields, built-up areas, reforestation lands, logging, quarries, and bodies of water. We have provided area coverage for each type of land of the whole transboundary basin, and for the Russian and Chinese parts. According to the results of computer-aided visual deciphering and automatic deciphering, forests are the most common land use type in the basin. In the Chinese part of the basin, forests dominate over the other types of land. Agricultural lands and meadows have assumed narrow and linear shapes. Built-up areas have less coverage here than in the Russian part of the basin. However, the coverage of logging and reforestation lands is considerably larger than in the Russian part of the basin. In the Russian part of the basin, forests co-dominate with the agricultural lands and meadows. In some areas of this part of the basin forests disappear almost completely. The Russian part of the basin also has the larger coverage of shrubs and woodlands, unused agricultural lands, rice fields and unused rice fields. The coverage of quarries is roughly equal in both parts of the basin.


2020 ◽  
Vol 149 ◽  
pp. 03006 ◽  
Author(s):  
Ekaterina V. Pavlova ◽  
Anastasiia I. Volkova ◽  
Ekaterina A. Demina

Currently, the consequences which take place in Khakassia expansion of tree-shrub vegetation on fallow lands have not been properly assessed neither from an ecological nor economic point of view. Based on the analysis of the agricultural map scale 1: 100 000 decoding images Landsat 4–5, 7, 8 and Sentinel 1, and 2, as well as subsatellite ground researches were carried out the identification, the description and assessment of the qualitative state of postagrogenic lands of Khakassia exposed to the processes of overgrowth of tree-shrub vegetation. As an example, this article analyzes the processes of overgrowth of agricultural land on the example of the territory of the Moscow village council of Ust-Abakan district. A geoinformation project of spatial distribution of postagrogenic lands within the Moscow village council of Ust-Abakan district of Khakassia was developed. The results of the research showed that in the studied area in the structure of agricultural land 67204 hectares of land belongs to the fallows located at different stages of recovery of which 77 % exposed to overgrowth processes. The obtained data indicate the need for the formation of management decisions in the field of land use.


2018 ◽  
Vol 48 (2) ◽  
pp. 168-177 ◽  
Author(s):  
Ana Paula Sousa Rodrigues ZAIATZ ◽  
Cornélio Alberto ZOLIN ◽  
Laurimar Goncalves VENDRUSCULO ◽  
Tarcio Rocha LOPES ◽  
Janaina PAULINO

ABSTRACT The upper Teles Pires River basin is a key hydrological resource for the state of Mato Grosso, but has suffered rapid land use and cover change. The basin includes areas of Cerrado biome, as well as transitional areas between the Amazon and Cerrado vegetation types, with intensive large-scale agriculture widely-spread throughout the region. The objective of this study was to explore the spatial and temporal dynamics of land use and cover change from 1986 to 2014 in the upper Teles Pires basin using remote sensing and GIS techniques. TM (Thematic Mapper) and TIRS (Thermal Infrared Sensor) sensor images aboard the Landsat 5 and Landsat 8, respectively, were employed for supervised classification using the “Classification Workflow” in ENVI 5.0. To evaluate classification accuracy, an error matrix was generated, and the Kappa, overall accuracy, errors of omission and commission, user accuracy and producer accuracy indexes calculated. The classes showing greatest variation across the study period were “Agriculture” and “Rainforest”. Results indicated that deforested areas are often replaced by pasture and then by agriculture, while direct conversion of forest to agriculture occured less frequently. The indices with satisfactory accuracy levels included the Kappa and Global indices, which showed accuracy levels above 80% for all study years. In addition, the producer and user accuracy indices ranged from 59-100% and 68-100%, while the errors of omission and commission ranged from 0-32% and 0-40.6%, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
D. L. D. Panditharathne ◽  
N. S. Abeysingha ◽  
K. G. S. Nirmanee ◽  
Ananda Mallawatantri

Soil erosion is one of the main forms of land degradation. Erosion contributes to loss of agricultural land productivity and ecological and esthetic values of natural environment, and it impairs the production of safe drinking water and hydroenergy production. Thus, assessment of soil erosion and identifying the lands more prone to erosion are vital for erosion management process. Revised Universal Soil Loss Equation (Rusle) model supported by a GIS system was used to assess the spatial variability of erosion occurring at Kalu Ganga river basin in Sri Lanka. Digital Elevation Model (30 × 30 m), twenty years’ rainfall data measured at 11 rain gauge stations across the basin, land use and soil maps, and published literature were used as inputs to the model. The average annual soil loss in Kalu Ganga river basin varied from 0 to 134 t ha−1 year−1 and mean annual soil loss was estimated at 0.63 t ha−1 year−1. Based on erosion estimates, the basin landscape was divided into four different erosion severity classes: very low, low, moderate, and high. About 1.68% of the areas (4714 ha) in the river basin were identified with moderate to high erosion severity (>5 t ha−1 year−1) class which urgently need measures to control soil erosion. Lands with moderate to high soil erosion classes were mostly found in Bulathsinghala, Kuruwita, and Rathnapura divisional secretarial divisions. Use of the erosion severity information coupled with basin wide individual RUSLE parameters can help to design the appropriate land use management practices and improved management based on the observations to minimize soil erosion in the basin.


2019 ◽  
Vol 11 (15) ◽  
pp. 4160 ◽  
Author(s):  
Qin Liu ◽  
Tiange Shi

Ecological vulnerability assessment increases the knowledge of ecological status and contributes to formulating local plans of sustainable development. A methodology based on remote sensing data and spatial principal component analysis was introduced to discuss ecological vulnerability in the Toutun River Basin (TRB). Exploratory spatial data analysis and a geo-detector were employed to evaluate the spatial and temporal distribution characteristics of ecological vulnerability and detect the driving factors. Four results were presented: (1) During 2003 and 2017, the average values of humidity, greenness, and heat in TRB increased by 49.71%, 11.63%, and 6.51% respectively, and the average values of dryness decreased by 165.24%. However, the extreme differences in greenness, dryness, and heat tended to be obvious. (2) The study area was mainly dominated by a high and extreme vulnerability grade, and the ecological vulnerability grades showed the distribution pattern that the northern desert area was more vulnerable than the central artificial oasis, and the central artificial oasis was more vulnerable than the southern mountainous area. (3) Ecological vulnerability in TRB showed significant spatial autocorrelation characteristics, and the trend was enhanced. The spatial distribution of hot/cold spots presented the characteristics of “hot spot—cold spot—secondary hot spot—cold spot” from north to south. (4) The explanatory power of each factor of ecological vulnerability was temperature (0.5955) > land use (0.5701) > precipitation (0.5289) > elevation (0.4879) > slope (0.3660) > administrative division (0.1541). The interactions of any two factors showed a non-linear strengthening effect, among which, land use type ∩ elevation (0.7899), land use type ∩ precipitation (0.7867), and land use type ∩ temperature (0.7791) were the significant interaction for ecological vulnerability. Overall, remote sensing data contribute to realizing a quick and objective evaluation of ecological vulnerability and provide valuable information for decision making concerning ecology management and region development.


2020 ◽  
Vol 12 (9) ◽  
pp. 3510 ◽  
Author(s):  
Dechao Chen ◽  
Acef Elhadj ◽  
Hualian Xu ◽  
Xinliang Xu ◽  
Zhi Qiao

Many catchments in northern Algeria, including the coastal Mitidja Basin in the north central part of the country have been negatively affected by the deterioration of water quality in recent years. This study aims to discover the relationship between land use change and its impact on water quality in the coastal Mitidja river basin. Based on the data of land use and water quality in 2000, 2010 and 2017, the relationship between land use change and surface water quality index in the Mitidja Watershed was discussed through GIS and statistical analysis. The results show that the physical and chemical properties of the Mitidja river basin have obvious spatial heterogeneity. The water quality of upstream was better than that of downstream. There was a significant spatial relationship between the eight water quality indicators and three land use types, including urban residential land, agricultural land and vegetation. In most cases, settlements and agricultural land are the dominant factors leading to river pollution, and higher vegetation coverage helps to improve water quality. The regression model revealed that percentage of urban settlement area was a predictor for NH4-N, BOD5, COD, SS, PO4-P, DO and pH, while vegetation was a predictor for NO3-N. The analysis also showed that during this period, urban settlement areas increased sharply, which has a significant impact on water quality variables. Agricultural land only had a significant positive correlation with PO4-P. The results provide an effective way to evaluate river water quality, control water pollution and land use management by landscape pattern.


Sign in / Sign up

Export Citation Format

Share Document