Assessment of the impacts of climate change and human activities on vegetation cover change in the Haihe River basin, China

2020 ◽  
Vol 115 ◽  
pp. 102834 ◽  
Author(s):  
Yan-Ling Sun ◽  
Mei Shan ◽  
Xin-Rui Pei ◽  
Xia-Kun Zhang ◽  
Yan-Li Yang
2022 ◽  
Vol 14 (2) ◽  
pp. 268
Author(s):  
Wenjing Yang ◽  
Yong Zhao ◽  
Qingming Wang ◽  
Buliao Guan

Vegetation regulates the exchange of terrestrial carbon and water fluxes and connects the biosphere, hydrosphere, and atmosphere. Over the last four decades, vegetation greening has been observed worldwide using satellite technology. China has also experienced a notably widespread greening trend. However, the responsiveness of vegetation dynamics to elevated CO2 concentration, climate change, and human activities remains unclear. In this study, we attempted to explore the impact of natural (precipitation, air temperature), biogeochemical (CO2), and anthropogenic drivers (nighttime light, afforestation area) on changes in vegetation greenness in the Haihe River Basin (HRB) during 2002–2018 at the county-level. We further determined the major factors affecting the variation in satellite-derived normalized difference vegetation index (NDVI) from moderate resolution imaging spectroradiometer (MODIS) for each county. The results indicated that over 85% of the counties had a significantly increased NDVI trend, and the average linear trend of annual NDVI across the study region was 0.0037 per year. The largest contributor to the NDVI trend was CO2 (mean contribution 45%), followed by human activities (mean contribution of 27%). Additionally, afforestation was a pronounced driving force for NDVI changes in mountainous areas, resulting from ecosystem restoration efforts. Our findings emphasize the crucial role of CO2 fertilization in vegetation cover change, while considering CO2 concentration, climate change, and human activities, and shed light on the significant influences of afforestation programs on water resources, especially in mountainous areas.


2014 ◽  
Vol 21 (5) ◽  
pp. 677-697 ◽  
Author(s):  
Zhe Yuan ◽  
Denghua Yan ◽  
Zhiyong Yang ◽  
Jun Yin ◽  
Patrick Breach ◽  
...  

2011 ◽  
Vol 26 (15) ◽  
pp. 2294-2306 ◽  
Author(s):  
Zhenxin Bao ◽  
Jianyun Zhang ◽  
Jiufu Liu ◽  
Guoqing Wang ◽  
Xiaolin Yan ◽  
...  

2018 ◽  
Vol 11 (1) ◽  
pp. 241-257 ◽  
Author(s):  
Sicheng Wan ◽  
Jianyun Zhang ◽  
Guoqing Wang ◽  
Lu Zhang ◽  
Lei Cheng ◽  
...  

Abstract Investigating long-term streamflow changes pattern and its response to climate and human factors is of crucial significance to understand the hydrological cycle under a changing environment. Caijiazhuang catchment located within Haihe River basin, north China was selected as the study area. To detect the trend and changes in streamflow, Mann–Kendall test was used. Elasticity and hydrological simulation methods were applied to assess the relative contribution of climate change and human activities on streamflow variability under three periods (baseline (1958–1977), impact I (1978–1997), and impact II (1998–2012)). The long-term hydro-climatic variables experienced substantial changes during the whole study period, and 1977 was the breaking year of streamflow change. Attribution analysis using the two methods showed consistent results: for impact I, climate change impacts explained 65% and 68% of streamflow reduction; however for impact II, it only represented 49% and 56% of streamflow reduction. This result indicated that human activities were intensifying over time. Various types of human activities presented significant effects on streamflow regimes including volumes and hydrographs. The findings of this paper could provide better insights of hydrological evolution and would thus assist water managers in sustainably managing and providing water use strategies under a changing environment.


2012 ◽  
Vol 460-461 ◽  
pp. 117-129 ◽  
Author(s):  
Zhenxin Bao ◽  
Jianyun Zhang ◽  
Guoqing Wang ◽  
Guobin Fu ◽  
Ruimin He ◽  
...  

2019 ◽  
Vol 11 (4) ◽  
pp. 1551-1569
Author(s):  
Zhenxin Bao ◽  
Jianyun Zhang ◽  
Xiaolin Yan ◽  
Guoqing Wang ◽  
Junliang Jin ◽  
...  

Abstract The impact of future climate change on streamflow is assessed in the Haihe River basin (HRB) by the Variable Infiltration Capacity (VIC) model, using the outputs from 18 general circulation models (GCMs) of the Coupled Model Inter-comparison Project Phase 5 (CMIP5). Three Representative Concentration Pathway (RCP) scenarios have been used, including RCP2.6, RCP4.5, and RCP8.5. Based on the model parameters calibration in six catchments in the HRB and parameter regionalization, the hydrological simulation for the whole HRB denotes good performance of the VIC model. Taking the period 1961–1990 as a baseline period, the outputs from the GCMs indicate that the HRB will become warmer and wetter in the 21st century (2010–2099). There might be an increasing trend for the streamflow in the HRB under future climate change scenarios. For example, in the 2050s (2040–2069), the streamflow may increase by 12%, 28%, and 24% under the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Monthly, the highest and lowest increase in streamflow is in dry and wet seasons, respectively. Spatially, the increasing trend for streamflow in the north HRB is higher than that in the south HRB. The uncertainty from the GCMs and climatic scenarios should be further focused.


Sign in / Sign up

Export Citation Format

Share Document